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Motivation

e GDL provides a unified mathematical framework for
deep learning architectures.

e The Curse of Dimensionality: High-dimensional datasets
are sparse, thus leading to poor generalization.
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Symmetry

Key Idea: leverage group theory to formalize symmetries.

e A symmetry is a transformation that preserves an object's

essential information.

o for example, a reflected dog image remains recognizable as

the same dog.

Definition (Invariance). Let (G, °) be a group that acts on the set X with left group action -

and Y a set. A function f : X — Y is said to be G-invariant if

flg-x)=f(x) VgeC xeX.

Definition (Equivariance). Let (G, ) be a group acting on the sets X and Y. A function

f + X — Y is said to be G-equivariant if

flg-x)=g-fx) vgeg xeX,

where - denotes the corresponding group action on each set.

Sets

Key Idea: When modeling functions on sets, the order of the
input should not matter.

e Assume Q = [d], C = RF.
e Representation:

x(1)
x(2)

L xd)

Definition (Permutation Invariance). A function f : Rk — Y, where Y is any set, is
said to be permutation invariant if, for all permutation matrices P € R*? and all X € R¥¥,

f(PX) = f(X).

Definition (Permutation Equivariance). A function f : R** — R¥ is said to be permu-
tation equivariant if, for all permutation matrices P € R*? and all X € R**,

f(PX) = Pf(X).

Definition (DeepSets). Let MLPyy : R* — R and MLPyy : R¥ — Y be MLPs. Let @
denote any permutation-invariant operator. A DeepSet is a function DSy : R** — Y,

defined by
D MLPW(X»)

i€[d]

DSy w(X) = MLPW’(

Experiment: Point cloud classification on ModelNet10.
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Signal

Definition (Signal). Let Q be a finite set and C a vector space of dimension d (whose dimen-
sions are called channels). A signal on Q is a function

x:0Q —C.

O0=C=0

S

Sfc _ {xf :

(o

Definition (Equivariant Block). Let S = {x : = {
Q! — C’} be sets of signals, with |Q| < |Y|. Let (G, <)
Q,Q’, Q! through -. We define the following building blocks:

Scale Separation

Key Idea: phenomena operating at different scales can often
be modeled independently.

i Nl
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Definition (Coarsening Operator). Let S = {x : Q — C} and S’ = {x’ : O — C} be
sets of signals, with |Q’| < |Q|. A Coarsening Operator P is a function P : S — S’.

GDL Blueprint

e Leverage scale separation to reduce signal dimension.
e Leverage symmetries to restrict the hypothesis set.

Q — C}, 8 x': Q — C'} and

be a group acting on
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1. Linear G-equivariant layer E : S — S’ satisfying E(g - x) = g+ E(x) forallg € G
and x € S.

2. Nonlinearity 8 : S’ — S’, obtained applying a non-linear function § : ¢’ — C’
coordinate-wise: 8(x")(u’) = d(x"(u’)), for x’ € S” and v’ € OV’

3. Coarsening Operator P : S — S’.
A G-Equivariant Block B : S — S’.is a composition
B(x) = P(6(E(x))),

Definition (Invariant Layer). Let S = {x : Q — C} be a set of signals, and Y the set of
labels. Let (G, <) be a group that acts on Q. A G-Invariant Layer is a functionl : § — Y

x €S.

that satisfies

6

Graphs

Key Idea: When modeling functions on graphs, the order
(label) of the nodes should not matter.

o LetG=(V,E). Assume Q =V =[d].
e Representation:

o Feature matrix X

o Adjacency matrix A

Definition (Permutation Invariance). A function f : R**xR%4 — Y, where Y is any set,
is said to be permutation invariant if, for all permutation matrices P € R*?, all X € R¥¥,

and all A € R4,
F(PX, PAP") = f(X, A).

Definition (Permutation Equivariance). A function f : R¥k x R%¢ — R%¥ s said to
be permutation equivariant if, for all permutation matrices P € R*?, all X € R**, and all
Ae R

f(PX, PAP") = Pf(X).

Definition (GNN Layer). Let G = (V, E) be a graph with corresponding adjacency matrix
A € R* and feature matrix X € R*™*, Define M, = Uietoyora) R™>? to be the set of all
matrices with up to d rows. Let & : RF x My — R¥ be a permutation invariant function w.
r. t. the second argument (i. e. o(h, PH) = o(h, H) for all permutation matrices P). A GNN
layer f : R x R¥*? — R¥™¥ is a function defined by

(X X)) ——

A = | 0(Xz, Xny2)) —— _

— J(dexm(d)) ——

One example is the attentional GNN, used by the Transformer:
o Xui) = 9( X €D (X, X)o(X;) ).

JENA()

Experiment: Molecule classification on MUTAG.
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I(g-x)=1(X) forallxe S ,gedq.

Grids

Key Idea: When modeling functions on images, where the
object appears in the image should not matter.

Assume Q = {0,...,d-1}x{0,..,d-1},C =R
Representation: X € R” s. t. X;; = x(i, /)

Definition (Translation Invariance). A function f : R® — Y, where Y is any set, is said
to be translation invariant if, for all m,n € {0,..,d - 1}, all X € RY,

f(S™X(S")) = f(X).

Definition (Translation Equivariance). A function f : R® — R is said to be translation
equivariant if, for all m,n € {0,...,d - 1}, all X € R,

fS™X(S")') = S"f(X)(S")".
Where §™, S™ denote (cyclic) shift matrices.

Definition (Convolution). Let x : Q@ — R be the input signal and w : Q — R be the
convolution kernel. The convolution operator « is defined as:

k-1 k

e w(if) =Y 3

m=0

—_

w(m, n) x(i - m, j - n),
0

=

where x « w : Q — R.

Experiment: Digit classification on MNIST.
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