

An Introduction to Geometric Deep Learning on Sets, Graphs and Grids

Gabriel Jacob Perin, Advisor: Nina S. T. Hirata

Instituto de Matemática, Estatística e Ciência da Computação - Universidade de São Paulo

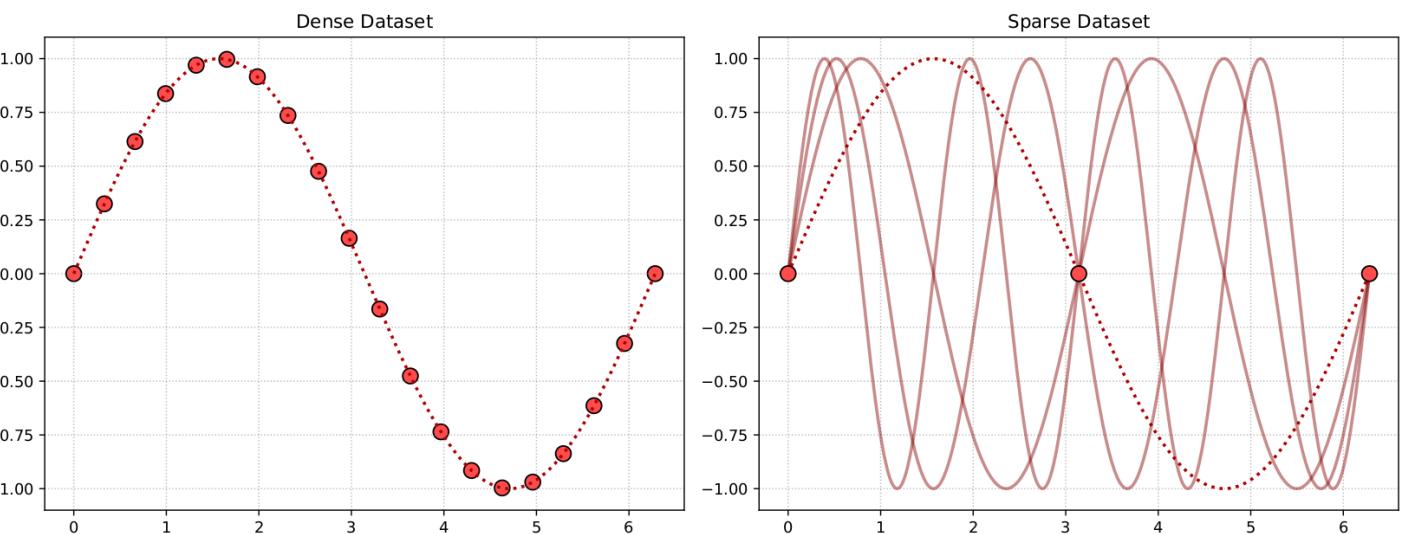
IME

USP

More Info

Motivation

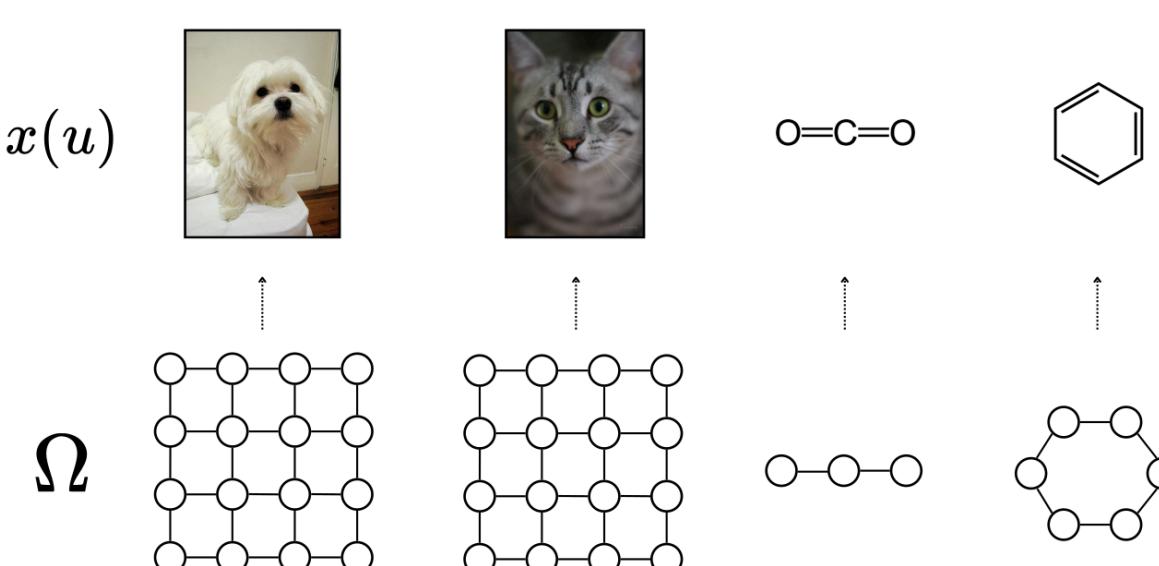
- GDL provides a **unified mathematical framework** for deep learning architectures.
- The Curse of Dimensionality:** High-dimensional datasets are **sparse**, thus leading to **poor generalization**.



Signal

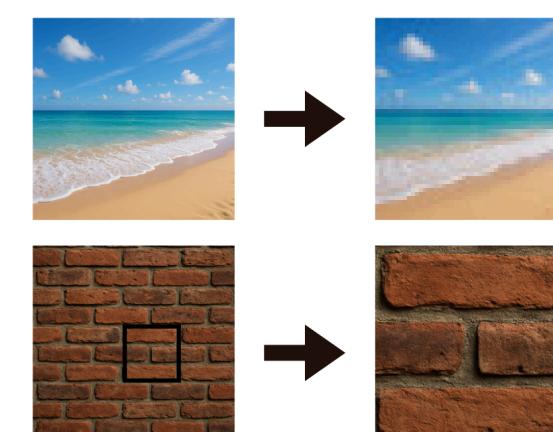
Definition (Signal). Let Ω be a finite set and C a vector space of dimension d (whose dimensions are called channels). A **signal** on Ω is a function

$$x : \Omega \rightarrow C.$$



Scale Separation

Key Idea: phenomena operating at different scales can often be modeled independently.



Definition (Coarsening Operator). Let $S = \{x : \Omega \rightarrow C\}$ and $S' = \{x' : \Omega' \rightarrow C\}$ be sets of signals, with $|\Omega'| \leq |\Omega|$. A **Coarsening Operator** P is a function $P : S \rightarrow S'$.

Symmetry

Key Idea: leverage group theory to formalize symmetries.

- A symmetry is a **transformation** that **preserves** an object's **essential information**.
- for example, a reflected dog image remains recognizable as the same dog.

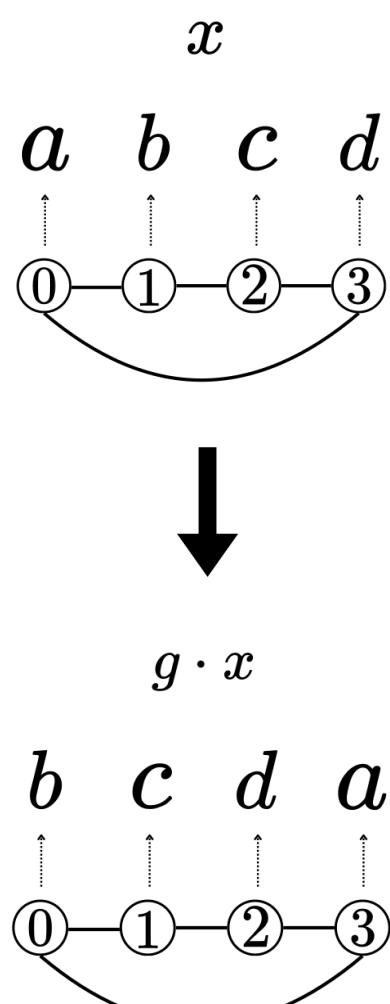
Definition (Invariance). Let (G, \circ) be a group that acts on the set X with left group action. and Y a set. A function $f : X \rightarrow Y$ is said to be G -invariant if

$$f(g \cdot x) = f(x) \quad \forall g \in G, x \in X.$$

Definition (Equivariance). Let (G, \circ) be a group acting on the sets X and Y . A function $f : X \rightarrow Y$ is said to be G -equivariant if

$$f(g \cdot x) = g \cdot f(x) \quad \forall g \in G, x \in X,$$

where \cdot denotes the corresponding group action on each set.



- Leverage **scale separation** to **reduce signal dimension**.
- Leverage **symmetries** to **restrict the hypothesis set**.

Definition (Equivariant Block). Let $S = \{x : \Omega \rightarrow C\}$, $S' = \{x' : \Omega' \rightarrow C'\}$ and $S'_c = \{x'_c : \Omega'_c \rightarrow C'\}$ be sets of signals, with $|\Omega'_c| \leq |\Omega|$. Let (G, \circ) be a group acting on $\Omega, \Omega', \Omega'_c$ through \cdot . We define the following building blocks:

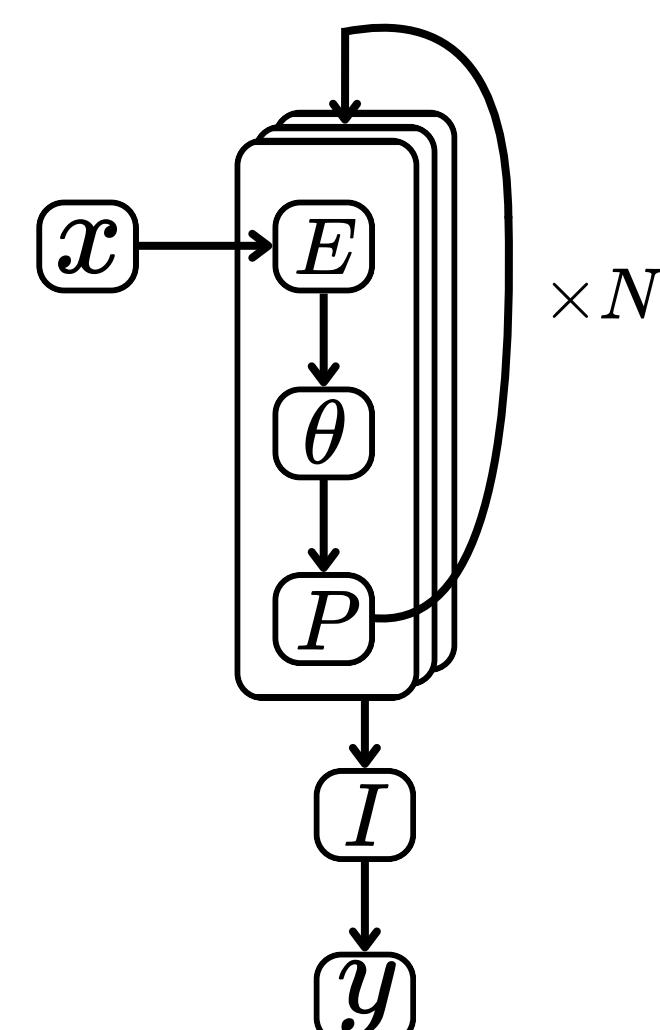
1. Linear G -equivariant layer $E : S \rightarrow S'$, satisfying $E(g \cdot x) = g \cdot E(x)$ for all $g \in G$ and $x \in S$.
2. Nonlinearity $\theta : S' \rightarrow S'$, obtained applying a non-linear function $\theta : C' \rightarrow C'$ coordinate-wise: $\theta(x')(u') = \theta(x'(u'))$, for $x' \in S'$ and $u' \in \Omega'$.
3. Coarsening Operator $P : S' \rightarrow S'_c$.

A G -Equivariant Block $B : S \rightarrow S'_c$ is a composition

$$B(x) = P(\theta(E(x))), \quad x \in S.$$

Definition (Invariant Layer). Let $S = \{x : \Omega \rightarrow C\}$ be a set of signals, and \mathcal{Y} the set of labels. Let (G, \circ) be a group that acts on Ω . A G -Invariant Layer is a function $I : S \rightarrow \mathcal{Y}$ that satisfies

$$I(g \cdot x) = I(x) \quad \text{for all } x \in S, g \in G.$$



Sets

Key Idea: When modeling functions on sets, the order of the input should not matter.

- Assume $\Omega = [d]$, $C = \mathbb{R}^k$.
- Representation:

$$X = \begin{bmatrix} x(1) \\ x(2) \\ \vdots \\ x(d) \end{bmatrix}$$

Definition (Permutation Invariance). A function $f : \mathbb{R}^{d \times k} \rightarrow \mathcal{Y}$, where \mathcal{Y} is any set, is said to be **permutation invariant** if, for all permutation matrices $P \in \mathbb{R}^{d \times d}$ and all $X \in \mathbb{R}^{d \times k}$,

$$f(PX) = f(X).$$

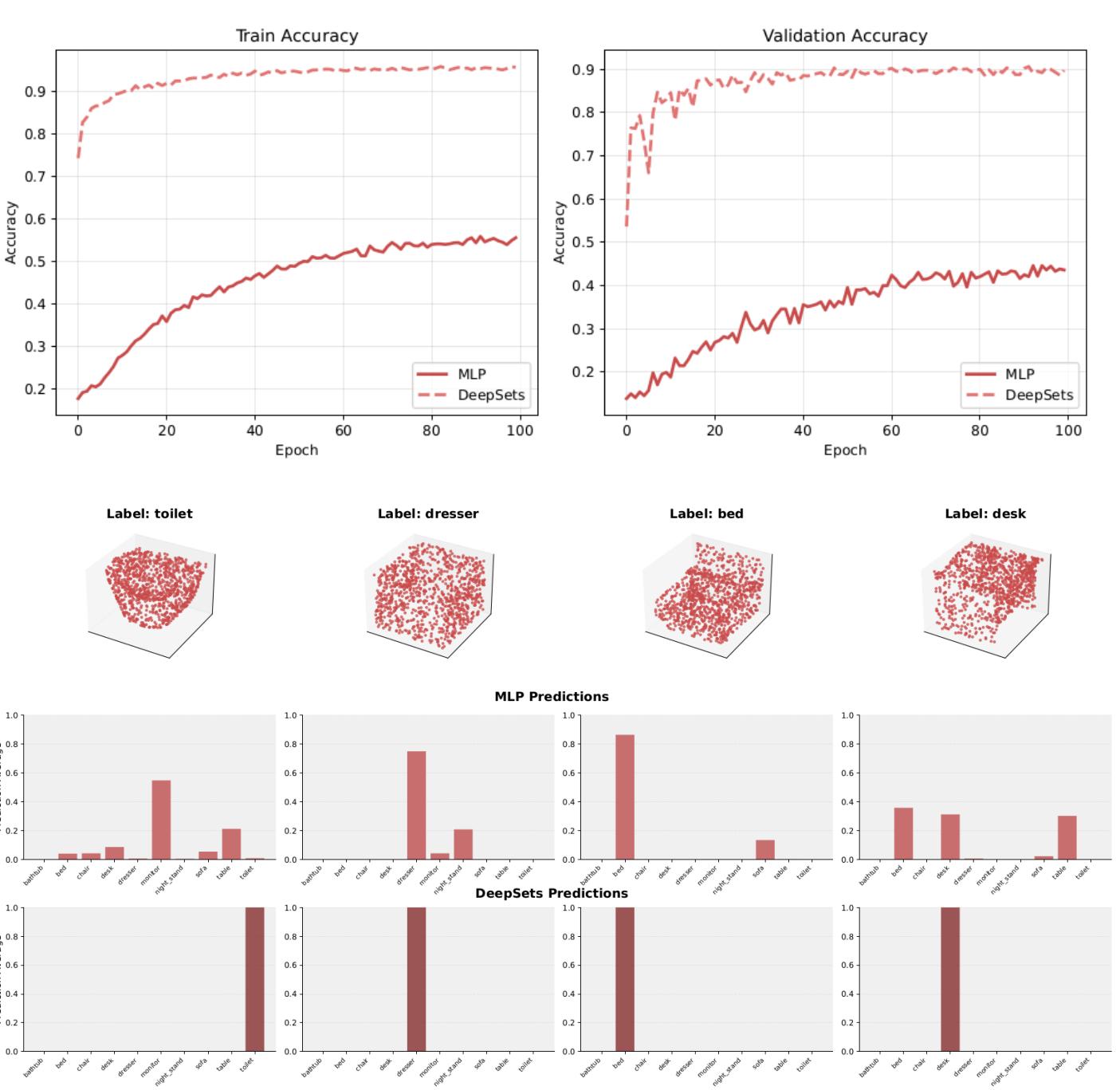
Definition (Permutation Equivariance). A function $f : \mathbb{R}^{d \times k} \rightarrow \mathbb{R}^{d \times k'}$ is said to be **permutation equivariant** if, for all permutation matrices $P \in \mathbb{R}^{d \times d}$ and all $X \in \mathbb{R}^{d \times k}$,

$$f(PX) = Pf(X).$$

Definition (DeepSets). Let $MLP_{\mathcal{W}} : \mathbb{R}^k \rightarrow \mathbb{R}^{k'}$ and $MLP_{\mathcal{W}'} : \mathbb{R}^{k'} \rightarrow \mathcal{Y}$ be MLPs. Let \oplus denote any permutation-invariant operator. A **DeepSet** is a function $DS_{\mathcal{W}, \mathcal{W}'} : \mathbb{R}^{d \times k} \rightarrow \mathcal{Y}$, defined by

$$DS_{\mathcal{W}, \mathcal{W}'}(X) = MLP_{\mathcal{W}'} \left(\bigoplus_{i \in [d]} MLP_{\mathcal{W}}(X_i) \right)$$

Experiment: Point cloud classification on ModelNet10.



Graphs

Key Idea: When modeling functions on graphs, the order (label) of the nodes should not matter.

- Let $G = (V, E)$. Assume $\Omega = V = [d]$.
- Representation:
 - Feature matrix X
 - Adjacency matrix A

Definition (Permutation Invariance). A function $f : \mathbb{R}^{d \times k} \times \mathbb{R}^{d \times d} \rightarrow \mathcal{Y}$, where \mathcal{Y} is any set, is said to be **permutation invariant** if, for all permutation matrices $P \in \mathbb{R}^{d \times d}$, all $X \in \mathbb{R}^{d \times k}$, and all $A \in \mathbb{R}^{d \times d}$,

$$f(PX, PA P^T) = f(X, A).$$

Definition (Permutation Equivariance). A function $f : \mathbb{R}^{d \times k} \times \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{d \times k'}$ is said to be **permutation equivariant** if, for all permutation matrices $P \in \mathbb{R}^{d \times d}$, all $X \in \mathbb{R}^{d \times k}$, and all $A \in \mathbb{R}^{d \times d}$,

$$f(PX, PA P^T) = Pf(X).$$

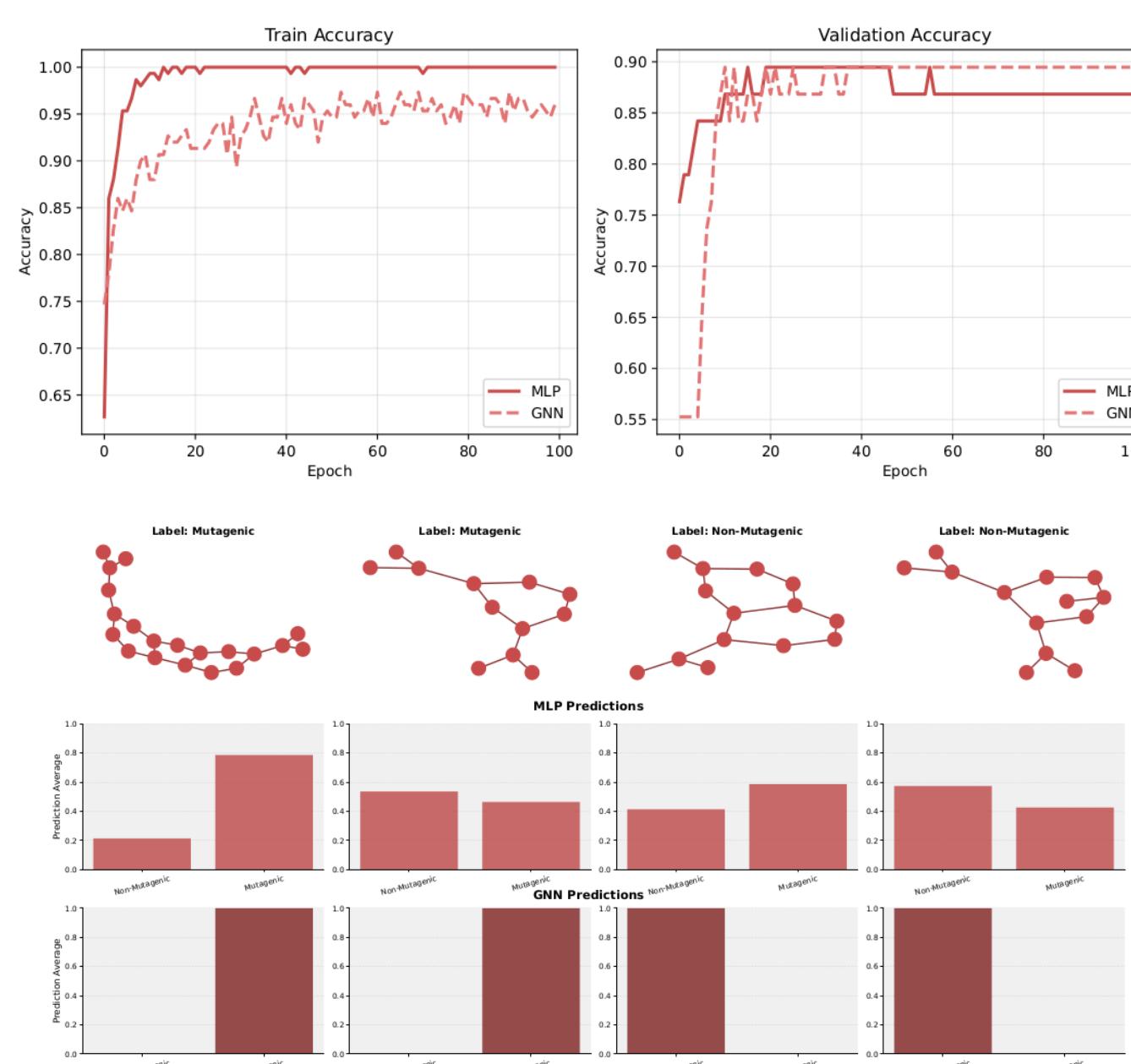
Definition (GNN Layer). Let $G = (V, E)$ be a graph with corresponding adjacency matrix $A \in \mathbb{R}^{d \times d}$ and feature matrix $X \in \mathbb{R}^{d \times k}$. Define $\mathcal{M}_d = \bigcup_{i \in \{0, \dots, d\}} \mathbb{R}^{i \times d}$ to be the set of all matrices with up to d rows. Let $\sigma : \mathbb{R}^k \times \mathcal{M}_d \rightarrow \mathbb{R}^{k'}$ be a permutation invariant function w. r. t. the second argument (i. e. $\sigma(h, PH) = \sigma(h, H)$ for all permutation matrices P). A GNN layer $f : \mathbb{R}^{d \times k} \times \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{d \times k'}$ is a function defined by

$$f(X, A) = \begin{bmatrix} \sigma(X_1, X_{N_A(1)}) \\ \sigma(X_2, X_{N_A(2)}) \\ \vdots \\ \sigma(X_d, X_{N_A(d)}) \end{bmatrix}.$$

One example is the attentional GNN, used by the Transformer:

$$\sigma(X_i, X_{N_A(i)}) = \theta \left(X_i, \bigoplus_{j \in N_A(i)} a(X_i, X_j) \varrho(X_j) \right),$$

Experiment: Molecule classification on MUTAG.



Grids

Key Idea: When modeling functions on images, where the object appears in the image should not matter.

- Assume $\Omega = \{0, \dots, d-1\} \times \{0, \dots, d-1\}$, $C = \mathbb{R}^3$.
- Representation: $X \in \mathbb{R}^{\Omega}$ s. t. $X_{ij} = x(i, j)$

Definition (Translation Invariance). A function $f : \mathbb{R}^{\Omega} \rightarrow \mathcal{Y}$, where \mathcal{Y} is any set, is said to be **translation invariant** if, for all $m, n \in \{0, \dots, d-1\}$, all $X \in \mathbb{R}^{\Omega}$,

$$f(S^m X(S^n)^T) = f(X).$$

Definition (Translation Equivariance). A function $f : \mathbb{R}^{\Omega} \rightarrow \mathbb{R}^{\Omega}$ is said to be **translation equivariant** if, for all $m, n \in \{0, \dots, d-1\}$, all $X \in \mathbb{R}^{\Omega}$,

$$f(S^m X(S^n)^T) = S^m f(X)(S^n)^T.$$

Where S^m, S^n denote (cyclic) shift matrices.

Definition (Convolution). Let $x : \Omega \rightarrow \mathbb{R}$ be the input signal and $w : \Omega \rightarrow \mathbb{R}$ be the convolution kernel. The convolution operator $*$ is defined as:

$$(x * w)(i, j) = \sum_{m=0}^{k-1} \sum_{n=0}^{k-1} w(m, n) x(i-m, j-n),$$

where $x * w : \Omega \rightarrow \mathbb{R}$.

Experiment: Digit classification on MNIST.

