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Resumo

Gabriel Jacob Perin. Uma Introdução ao Aprendizado Profundo Geométrico em
Conjuntos, Grafos e Grades. Monografia (Bacharelado). Instituto de Matemática, Es-

tatística e Ciência da Computação, Universidade de São Paulo, São Paulo, 2025.

O Aprendizado Profundo tornou-se um paradigma dominante na inteligência artificial moderna, al-

cançando resultados expressivos em diversos domínios. No entanto, grande parte de seu desenvolvimento

permanece empírica, em vez de fundamentada teoricamente. O Aprendizado Profundo Geométrico (ou Ge-

ometric Deep Learning, GDL) surge como um arcabouço conceitual que permite compreender e projetar

arquiteturas neurais por meio de simetrias. Este trabalho busca tornar o GDL acessível em nível de gradua-

ção ao simplificar seus fundamentos teóricos e ao focar em três domínios geométricos centrais: Conjuntos,

Grafos e Grades. Em vez de apresentar uma revisão exaustiva da literatura, o texto enfatiza intuição, ferra-

mentas matemáticas essenciais e exemplos claros que conectam estrutura geométrica ao projeto de redes

neurais. O leitor é introduzido aos conceitos fundamentais de aprendizagem de máquina, ao papel dos vie-

ses geométricos e ao GDL blueprint antes de explorar como arquiteturas canônicas, como DeepSets, Graph

Neural Networks e Convolutional Neural Networks, emergem naturalmente desses princípios. Por fim, são

apresentados experimentos comparando modelos que preservam simetrias com aproximadores universais,

destacando o impacto dos vieses geométricos no comportamento e desempenho dos modelos.

Palavras-chave: Aprendizado de Máquina. Aprendizado Profundo. Aprendizado Profundo Geométrico.





Abstract

Gabriel Jacob Perin. An Introduction to Geometric Deep Learning on Sets, Graphs,
and Grids. Capstone Project Report (Bachelor). Institute of Mathematics, Statistics and

Computer Science, University of São Paulo, São Paulo, 2025.

Deep Learning has become a dominant paradigm in modern artificial intelligence, achieving impres-

sive results across many domains, yet much of its development remains empirical rather than theoretically

grounded. Geometric Deep Learning (GDL) offers a principled framework to understand and design neural

architectures through symmetries. This work aims to make GDL accessible at the undergraduate level by

simplifying its theoretical foundations and focusing on three core geometric domains: Sets, Graphs, and

Grids. Rather than presenting an exhaustive survey, the work emphasizes intuition, essential mathematical

tools, and clear examples that connect geometric structure to neural network design. The reader is intro-

duced to the foundational concepts of Machine Learning, the role of geometric priors, and the GDL blueprint

before exploring how canonical architectures such as DeepSets, Graph Neural Networks, and Convolutional

Neural Networks naturally emerge from these principles. Finally, the thesis presents experiments compar-

ing symmetry-aware models with universal approximators, highlighting the impact of geometric inductive

biases on model behavior and performance.

Keywords: Machine Learning. Deep Learning. Geometric Deep Learning.
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Chapter 1

Introduction

In recent years, Deep Learning has become one of the most influential and widely
adopted paradigms in artificial intelligence. Its success spans numerous domains, including
computer vision, natural language processing, robotics, and scientific modeling. As models
grow larger and are increasingly deployed in mission-critical applications, there is a
growing need to better understand why certain architectures work, how they generalize,
and how they can be designed more systematically. Despite its remarkable empirical
performance, Deep Learning has largely evolved through experimentation rather than
theory, often relying on heuristics, architectural trial-and-error, and massive computational
resources. This empirical foundation has led to an ecosystem where many architectures
appear disparate, ad hoc, or domain-specific, without an obvious unifying principle.

Geometric Deep Learning (GDL) emerged as an attempt to bring structure and theoret-
ical grounding to this landscape (Michael M Bronstein et al., 2021). Rather than treating
neural networks as black boxes, GDL provides a principled framework for designing archi-
tectures by analyzing the underlying geometric structure of data (Michael M Bronstein
et al., 2021). Through concepts such as symmetry, invariance, and equivariance, GDL
categorizes existing models and guides the creation of new ones in a way that aligns
model behavior with the domain it operates on (Michael M Bronstein et al., 2021). These
principles are increasingly relevant in areas such as molecular modeling and physical
simulation, domains where respecting structure is central to performance, robustness, and
interpretability (Michael M Bronstein et al., 2021).

However, fully approaching GDL can be challenging. The field sits at the intersection
of mathematics, theoretical computer science, and Machine Learning, involving concepts
such as group theory, topology, and representation theory, areas not typically included in
a standard undergraduate computer science curriculum (Borde and M. Bronstein, 2025).
The goal of this thesis is to bridge that gap. By restricting the scope of GDL to three core
geometric domains, namely Sets, Graphs, and Grids, we simplify the theoretical landscape
while retaining the essential ideas. Rather than providing a comprehensive survey of
the field, our emphasis is on intuition, exemplification, and key theoretical results that
describe how symmetry informs architectural design.

This monograph is intended to be accessible to undergraduate students with introduc-



2

1 | INTRODUCTION

tory knowledge of Machine Learning and Deep Learning. It is largely self-contained and
minimizes the need for advanced mathematical prerequisites. By the end of this work, the
reader should understand why symmetry matters in learning systems, how to formally an-
alyze invariances and equivariances, and how widely used models such as DeepSets, Graph
Neural Networks, and Convolutional Neural Networks arise naturally from geometric
considerations (Michael M Bronstein et al., 2021; Zaheer et al., 2017; Xu et al., 2018).

The first chapter, Fundamentals, introduces the background required for the remainder
of the work. We begin with a brief overview of Machine Learning, followed by the princi-
ples and formalization of Supervised Learning. We conclude by discussing the curse of
dimensionality and why high-dimensional learning requires structure and constraints.

The next chapter, Geometric Priors, introduces the foundations of GDL. We define
the notion of a signal over a geometric domain, explore the role of symmetries and scale
separation, and examine how these concepts help mitigate the curse of dimensionality.
Finally, we present the GDL Blueprint: a general scheme for constructing neural network
architectures grounded in geometric principles.

The following three chapters instantiate the blueprint in concrete domains. We be-
gin with Sets, the simplest geometric objects. By studying permutation symmetry, we
show how it naturally leads to the DeepSets architecture (Zaheer et al., 2017). Next, we
examine Graphs, where data elements are connected by relational structure. We again
study permutation symmetry in this context and show how it gives rise to Graph Neural
Networks (GNNs) (Michael M Bronstein et al., 2021). Remarkably, we also observe that
the widely used Transformer architecture can be understood as a special case of a GNN
(Vaswani et al., 2017; Joshi, 2020). We conclude with Grids, a structured subclass of graphs
commonly used to represent images. Here, translation symmetry leads to Convolutional
Neural Networks (CNNs) as a natural consequence of the GDL framework (LeCun, Boser,
et al., 1989; Michael M Bronstein et al., 2021).

Finally, the GDL in Action chapter transitions from theory to practice. We implement
the architectures studied throughout the thesis and compare them with universal approxi-
mators that do not encode geometric priors. Through experiments, we empirically examine
how the presence or absence of geometric inductive biases influences predictive behavior.



3

Chapter 2

Fundamentals

This chapter introduces foundational concepts in Machine Learning. In the first section,
we provide a brief overview of the field. The second section defines the core principles of
Supervised Learning. Finally, the third section discusses the curse of dimensionality and
highlights the difficulties of approximating arbitrary functions in high-dimensional spaces.
The subsequent chapters demonstrate how the Geometric Deep Learning framework
informs and inspires the design of neural network architectures aimed at overcoming
these challenges.

2.1 Learning from Data
The human mind is remarkably adept at solving complex problems. People can rec-

ognize faces in a crowd, understand spoken language, and predict physical events, often
without relying on formal definitions or rigid rules. We perform such tasks by learning
from experience, generalizing from the examples we observe in everyday life.

Machine Learning (ML) is a field of computer science that enables computers to
tackle complex tasks without being explicitly programmed with task-specific rules. Instead
of hand-crafting algorithms for each problem, ML provides techniques that leverage data

to automatically discover effective empirical solutions. By analyzing large datasets, these
methods can learn patterns, make predictions, and adapt to new information, much like
humans do when learning from examples.

This premise encompasses a wide range of approaches, giving rise to multiple machine
learning paradigms, each defined by the nature of the data and the learning objective.
Among these, perhaps the most widely studied—and the one explored in this work—is Su-
pervised Learning (SL). In Supervised Learning, the dataset includes explicit information
about the desired output for each input. For example, consider building a classification
system that distinguishes between images of cats and dogs. In this setting, Supervised
Learning can be applied if each image in the training set is labeled as either a cat or a dog.

In contrast, Unsupervised Learning (UL) assumes that the dataset contains only
input data, with no associated output labels. Instead of learning from known outcomes,
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UL algorithms attempt to discover patterns or structures in the data. A common approach
is clustering, where the algorithm groups similar inputs together under the assumption
that items within the same group share some underlying characteristic.

A third major paradigm is Reinforcement Learning (RL). Like UL, it operates without
explicit input-output pairs. However, instead of trying to discover structure, RL algorithms
interact with an environment where certain actions yield rewards. The data includes
feedback in the form of reward signals, indicating how good a particular action was in a
given situation. The learning objective is to discover a policy, i. e. a mapping from states
(inputs) to actions (outputs), that maximizes the reward.

Across all these paradigms, advances in computational power, particularly the
widespread availability of GPUs, have been a key enabler of the success of Deep Learning
(DL). Deep learning refers to the use of deep neural networks, which are neural architec-
tures composed of many layers, capable of modeling highly complex and flexible functions.
These models are typically trained using gradient-based optimization methods, which
adjust the model parameters to minimize prediction error. Deep learning has achieved
remarkable success across a wide range of applications, and is widely regarded as one
of the main driving forces behind the recent surge in interest and progress in artificial
intelligence.

One of the key drivers of this progress has been the development of new Deep Learn-
ing architectures that are easier to train and better suited to specific types of data. For
example, the introduction of Convolutional Neural Networks (CNNs) by LeCun, Boser,
et al. (1989), and future enhancements in architectures such as LeNet by LeCun, Bot-
tou, et al. (2002), enabled deep learning models to achieve unprecedented performance
on previously intractable tasks. A landmark achievement was the success of AlexNet
by Krizhevsky et al. (2012) in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) Russakovsky et al. (2015), which marked a turning point for computer vision
and Deep Learning more broadly.

In this context, architectural research in Deep Learning has largely been driven by
empirical experimentation and inspiration from other scientific fields. While many ar-
chitectures have been developed through trial and error, there have also been efforts
to establish unified theoretical frameworks from which various architectures could be
systematically derived. Notable examples include Topological Deep Learning Hajij et al.

(2022) and Categorical Deep Learning Gavranović et al. (2024), which aim to formalize the
design of neural networks using concepts from topology and category theory, respectively.
This work focuses on one of the most basic and influential of these unifying efforts:
Geometric Deep Learning (GDL).

Geometric Deep Learning is a framework that characterizes Deep Learning architec-
tures based on the symmetries they are designed to preserve. By formalizing how neural
networks respect these symmetries in data, GDL provides a unifying perspective that
explains the success of many modern architectures (e.g., CNNs, Transformers) and enables
their generalization to more complex domains, such as graphs, manifolds, and point clouds.
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2.2 The Principles of Supervised Learning
We now introduce the main components of Supervised Learning. The contents of

this chapter closely follow Michael M Bronstein et al. (2021), Abu-Mostafa et al. (2012)
and Michael M. Bronstein (2021).

Supervised Learning in its simplest formalization assumes access to a dataset  =
{(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1 of samples drawn i. i. d. from an underlying data distribution 𝑃 defined over
 × , where  is the input space and  is the output (labels) space. We may further assume
that there exists an unknown function 𝑓 ∗ ∶  →  such that 𝑓 ∗(𝑥𝑖) = 𝑦𝑖 for all 𝑖 = 1, ..., 𝑁 .

Given a set  of functions that map  to  (often referred to as the Hypothesis Set),
which is organized in terms of a complexity measure 𝑐 ∶  → ℝ+, the learning problem
is to find 𝑓 ∈  that better approximates 𝑓 ∗.

To solve this problem, it is necessary to properly define this notion of approximation.
For this, assume access to a point-wise loss function 𝓁 ∶  ×  → ℝ+ and define the
Population Loss 𝐿𝑃 ∶  → ℝ+ such that

𝐿𝑃 (𝑓 ) ∶= 𝔼(𝑥,𝑦)∼𝑃 [𝓁 (𝑓 (𝑥), 𝑦)],

and an Empirical Loss 𝐿 ∶  → ℝ+ such that

𝐿(𝑓 ) ∶=
1
𝑁

∑
(𝑥𝑖 ,𝑦𝑖 )∈

𝓁 (𝑓 (𝑥𝑖), 𝑦𝑖).

Intuitively, 𝐿 measures how well 𝑓 approximates 𝑓 ∗ with respect to the samples
available in the dataset, while 𝐿𝑃 measures how well this approximation is performed
regarding the whole data distribution. In an ideal world, we would be able to choose 𝑓
that minimizes 𝐿𝑃 and get a best possible approximation for 𝑓 ∗. However, clearly, 𝐿𝑃 is
not accessible in practice. Thus, the best one can do is to minimize 𝐿, in the hopes of
finding a function that also minimizes 𝐿𝑃 . This leads to one of the core principles behind
SL: Empirical Risk Minimization.

The idea of Empirical Risk Minimization is to choose an hypothesis 𝑓 that minimizes
the Empirical Loss 𝐿, often taking the complexity measure into account. There are many
formulation that seek to achieve this goal, such as the Penalized form

𝑓 = argmin
𝑓 ∈

𝐿(𝑓 ) + 𝜆𝑐(𝑓 ),

where 𝜆 ∈ ℝ is called the regularization coefficient, or the Restricted form

𝑓 = argmin
𝑓 ∈𝜌

𝐿(𝑓 ),

where 𝜌 ∶= {𝑓 ∈  s. t. 𝑐(𝑓 ) ≤ 𝜌} and 𝜌 ∈ ℝ is a complexity threshold.

Naturally, although performing well on the examples in , 𝑓 may end up with high
populational error. This phenomenon is called overfitting, and can be caused by different
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reasons. When overfitting does not occur (i. e. 𝑓 has low population and empirical loss),
it is said that 𝑓 generalizes well.

To illustrate these ideas, consider solving a regression problem from  = ℝ𝑑 to  = ℝ
with a Shallow Neural Network. In this setting, our hypothesis class is

 = {𝑓𝐴,𝑏,𝑤(𝑥) = 𝑤⊤𝜃(𝐴𝑥 + 𝑏) | 𝐴 ∈ ℝ𝑚×𝑑 , 𝑏, 𝑤 ∈ ℝ𝑚},

where 𝜃 ∶ ℝ𝑚 → ℝ𝑚 is a point-wise non-linear function. Possible complexity measures
for this set are the 𝐿1-norm,

𝑐(𝑓𝐴,𝑏,𝑤) = ∑
𝑖∈[𝑚]

∑
𝑗∈[𝑑]

|𝐴𝑖𝑗 | + ∑
𝑖∈[𝑚]

|𝑏𝑖 | + ∑
𝑖∈[𝑚]

|𝑤𝑖 |,

or the 𝐿2-norm,

𝑐(𝑓𝐴,𝑏,𝑤) = ∑
𝑖∈[𝑚]

∑
𝑗∈[𝑑]

𝐴2
𝑖𝑗 + ∑

𝑖∈[𝑚]
𝑏2𝑖 + ∑

𝑖∈[𝑚]
𝑤2
𝑖 ,

where [𝑛] denotes the set of integers ranging from 1 to 𝑛, i. e. [𝑛] = {1, ..., 𝑛}. Finally,
possible loss functions are the absolute error 𝓁 (𝑦̂, 𝑦) = |𝑦̂−𝑦| and the squared error 𝓁 (𝑦̂, 𝑦) =
(𝑦̂ − 𝑦)2. The components of the learning process are summarized in Figure 2.1.

Data distribution Target function

Sampled dataset

Loss function

Hypothesis set Complexity
measure

Final hypothesis
ERM

Figure 2.1: Components of the Supervised Learning formalization.

2.3 The Curse of Dimensionality
A natural question that arises is how many samples are required for the ERM to yield a

good approximation of 𝑓 ∗. Although this answer may depend on many factors, it is known
that this number does not scale well with the number of dimensions of  . To grasp an
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understanding of this fact, consider the expected distance of two points 𝑋, 𝑌 sampled
independently in a unit cube of dimension 𝑑 . It is known that 𝔼[||𝑋 − 𝑌 ||] ≥

√
𝑑
3 , for all

𝑑 ∈ ℕ (Weisstein, 2025). Therefore, the expected distance grows at least as fast as
√
𝑑 .

In other words, high-dimensional datasets are at a risk of being very sparse and thus,
leading to poor generalization. Figure 2.2 illustrates why: when data is dense, the learning
algorithm receives enough evidence to constrain the true underlying function. The left plot
shows that many observations force any reasonable interpolating function to resemble
the true sine wave. In contrast, sparse datasets impose weak constraints: many distinct
functions are consistent with the few observed points. As shown in the right plot, the
same small set of samples can be interpolated by multiple drastically different functions,
all achieving zero training error.

0 1 2 3 4 5 6

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Dense Dataset

0 1 2 3 4 5 6

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sparse Dataset

Figure 2.2: When many samples are available (left), only one sine function can match the data,

resulting in reliable inference. However, with very few samples (right), many different functions fit

the observations equally well, making the true underlying function impossible to recover from the

data alone.

This phenomenon is commonly called The Curse of Dimensionality, and is a well studied
phenomenon in the field of ML. There are many attempts to try to circumvent this problem,
such as dimensionality reduction (for example, Principal Component Analysis (Jolliffe
and Cadima, 2016)). However, such techniques assume data can be described as a combina-
tion of lower dimensional structures, which is not true in many real world applications.

In DL, an alternative approach for circumventing this problem is to use inductive biases,
i. e. to encode domain knowledge in the Hypothesis Set, in a way that this knowledge is
not required to be learned from the data. This allows achieving better generalization, with
fewer samples. Geometric Deep Learning proposes to exploit the geometric properties
of the data to restrict the Hypothesis Set according to the inductive biases observed in
the domain application.

In the next chapter, the main geometric ideas will be introduced, and a blueprint for
designing such Hypothesis Sets will be presented.
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Chapter 3

Geometric Priors

The content of this chapter closely follows Michael M Bronstein et al. (2021), Borde
and M. Bronstein (2025) and Michael M. Bronstein (2021). A prior is any assumption
about the application domain that is built directly into the model architecture, ensuring
that the model does not need to learn this property solely from data. Within the context
of Geometric Deep Learning (GDL), two fundamental types of priors are particularly
important: symmetries and scale separation.

Intuitively, symmetries are transformations that leave an object unchanged. In GDL,
architectures are designed to respect such symmetries, thereby constraining the hypothesis
space to functions consistent with them. Scale separation, in contrast, embodies the
principle that phenomenon occurring at different scales can be modeled independently.
By incorporating this assumption, models can simplify learning and effectively reduce
the dimensionality of the problem.

In this chapter, we will examine each of these priors in detail and, at the end, show
how they come together in a general blueprint for embedding inductive biases into neural
network architectures.

3.1 Signals
We start by formally defining a data point. Usually, 𝑥 ∈  is thought of as a vector

or a matrix. However, this view does not fully capture the geometric properties of the
data. Instead, we adopt the notion of a signal.

Definition 3.1 (Signal). Let Ω be a finite set and  a vector space of dimension 𝑑 (whose

dimensions are called channels). A signal on Ω is a function

𝑥 ∶ Ω → .

For signals that share the same domain Ω, the following operations are naturally defined

by leveraging the vector space structure of :

1. Addition: (𝑥 + 𝑦)(𝑢) = 𝑥(𝑢) + 𝑦(𝑢), ∀ 𝑢 ∈ Ω,
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2. Scalar multiplication: (𝛼𝑥)(𝑢) = 𝛼 𝑥(𝑢), ∀ 𝑢 ∈ Ω, 𝛼 ∈ ℝ,

3. Inner product: ⟨𝑥, 𝑦⟩ = ∑𝑢∈Ω⟨𝑥(𝑢), 𝑦(𝑢)⟩.

We note that in Michael M Bronstein et al., 2021, the domain Ω is treated as an
arbitrary set, and the inner product is expressed as an integral to accommodate continuous
spaces. In our setting, however, Ω is assumed to be finite (sufficient for the domains
relevant to this work) and therefore discrete. Under this assumption, the integral naturally
reduces to a finite summation.

The core motivation for this definition is to decouple the geometric structure of the
data (represented by Ω) from its features (represented by ). Although Ω is not required
to be anything more than a finite set, interesting properties emerge when it is endowed
with additional structure.

As an example, taking Ω = [𝑛] × [𝑛] and  = ℝ3 yields 𝑛 × 𝑛 RGB images. It is also
important to distinguish between collections of signals where Ω is fixed and those where
Ω may vary. In the latter case, each signal can live on a different domain. For instance,
molecules can be modeled as a collection of signals on the vertices of graphs, where
each molecule corresponds to a signal defined on its own underlying graph. Figure 3.1
illustrates this distinction.

Figure 3.1: Illustration of signals defined on different domains. The first two examples are cat and dog

images represented on a regular 2-D grid, thus sharing the same underlying domain. In contrast, the

last two examples correspond to carbon dioxide and benzene molecules, where the signals are defined

over distinct graph structures, and therefore do not share the same domain. Cat and dog images are

obtained from ImageNet (Deng et al., 2009).
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3.2 Symmetry

Intuitively, a symmetry is a transformation that preserves the essential information of
an object — for example, reflecting an image of a dog still yields an image recognizable as
the same dog. When working with signals defined over a domain Ω, we are particularly
interested in transformations that preserve the structure of that domain.

The notion of symmetry is inherently task-dependent. For instance, while reflection
may be a valid symmetry when classifying animals, it would not apply to road sign
recognition, where a mirrored image could alter the sign’s meaning. To study such trans-
formations in a principled way, we employ the language of groups, which provide the
formal framework for describing symmetries.

Definition 3.2 (Group). A group is an ordered pair (, ◦), where  is a set and ◦ ∶ × → 
is a binary operation satisfying the following axioms:

1. Associativity: For all 𝑎, 𝑏, 𝑐 ∈ , (𝑎◦𝑏)◦𝑐 = 𝑎◦(𝑏◦𝑐).

2. Identity element: There exists an element 𝑒 ∈  such that for all 𝑎 ∈ ,𝑒◦𝑎 = 𝑎◦𝑒 = 𝑎.

3. Inverse element: For each 𝑎 ∈ , there exists an element 𝑎−1 ∈  such that 𝑎◦𝑎−1 =
𝑎−1◦𝑎 = 𝑒.

In GDL, rather than considering groups as abstract entities, we turn our attention to
groups whose elements represent transformations in the data domain. For this, we need
a mathematical formalization for the interaction between these transformations and the
data. This formalization is given by group actions.

Definition 3.3 (Group Action). A (left) group action of a group (, ◦) on a set𝑋 is a mapping

⋅ ∶  × 𝑋 → 𝑋 , satisfying the following axioms:

1. Identity: the identity element 𝑒 ∈  acts as the identity transformation on 𝑋 ,

𝑒 ⋅ 𝑥 = 𝑥, ∀𝑥 ∈ 𝑋 .

2. Compatibility: for all 𝑔, ℎ ∈  and 𝑥 ∈ 𝑋 , the action satisfies:

(𝑔◦ℎ) ⋅ 𝑥 = 𝑔 ⋅ (ℎ ⋅ 𝑥).

Another useful concept is the one of orbits.

Definition 3.4 (Orbit). Let (, ◦) be a group that acts on the set 𝑋 with left group action ⋅.
The orbit of an element 𝑥 ∈ 𝑋 is defined as

Orb (𝑥) = {𝑔 ⋅ 𝑥 ∶ 𝑔 ∈ }

A natural next step is to verify how these transformations on Ω affect the signal that
lives on it. Suppose we have a group (, ◦) acting on Ω. We can lift its action to the set
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of signals  = {𝑥 ∶ Ω → } by defining

(𝑔 ⋅ 𝑥)(𝑢) = 𝑥(𝑔−1 ⋅ 𝑢),

for all 𝑔 ∈ 𝐺, 𝑢 ∈ Ω and 𝑥 ∈  .

A consequence of this definition is that the group (, ◦) acts linearly on  (the reader
may easily varify that by applying the definitions). This is a very desirable property, as linear
group actions on vector spaces can be represented as matrices, where the group action is
simply matrix multiplication. This concept will be further explored in the next chapters.

To better visualize these concepts, consider the following example, where the domain
can be thought of as cyclic graph of 4 nodes, and the group acting on it are rotations.

Example 3.1. Let Ω = {0, 1, 2, 3}. Consider the group  = {0, 1, 2, 3}, where the group

operation is addition modulo 4.

𝑔◦ℎ = 𝑔 + ℎ mod 4, for 𝑔, ℎ ∈ .

And the inverse is given by

𝑔−1 = −𝑔 mod 4.

Now define a signal 𝑥 ∶ Ω → ℝ, for instance

𝑥(0) = 𝑎, 𝑥(1) = 𝑏, 𝑥(2) = 𝑐, 𝑥(3) = 𝑑.

The action of  on the domain Ω can be defined also as addition modulo 4:

𝑔◦𝑢 = 𝑔 + 𝑢 mod 4 for 𝑔 ∈ , 𝑢 ∈ Ω,

and can be lifted to an action on signals:

(𝑔 ⋅ 𝑥)(𝑢) = 𝑥(𝑔−1 ⋅ 𝑢) = 𝑥(𝑢 − 𝑔 mod 4), 𝑔 ∈ , 𝑢 ∈ Ω.

For example, when 𝑔 = 1
(𝑔 ⋅ 𝑥)(𝑢) = 𝑥(𝑢 − 1 mod 4),

so that

(𝑔 ⋅ 𝑥)(0) =𝑥(0 − 1 mod 4) = 𝑥(3) = 𝑑
(𝑔 ⋅ 𝑥)(1) =𝑥(1 − 1 mod 4) = 𝑥(0) = 𝑎
(𝑔 ⋅ 𝑥)(2) =𝑥(2 − 1 mod 4) = 𝑥(1) = 𝑏
(𝑔 ⋅ 𝑥)(3) =𝑥(3 − 1 mod 4) = 𝑥(2) = 𝑐.

Figure 3.2 illustrates how the group action affects the signal. Although the transfor-
mation produces a new signal, the cyclic order of the letters 𝑎, 𝑏, 𝑐, 𝑑 remains unchanged.
This demonstrates the idea of a symmetry: the underlying structure is preserved even
though the signal itself is transformed.
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Figure 3.2: Illustration of a rotation acting on a signal defined over a cyclic graph of 4 nodes.

Now that we have the mathematical tools to describe the symmetries of the data, we
are ready to define two of the principal concepts of Geometric Deep Learning: invariance

and equivariance.

Definition 3.5 (Invariance). Let (, ◦) be a group that acts on the set 𝑋 with left group

action ⋅ and 𝑌 a set. A function 𝑓 ∶ 𝑋 → 𝑌 is said to be -invariant if

𝑓 (𝑔 ⋅ 𝑥) = 𝑓 (𝑥) ∀𝑔 ∈ , 𝑥 ∈ 𝑋 .

Definition 3.6 (Equivariance). Let (, ◦) be a group acting on the sets 𝑋 and 𝑌 . A function

𝑓 ∶ 𝑋 → 𝑌 is said to be -equivariant if

𝑓 (𝑔 ⋅ 𝑥) = 𝑔 ⋅ 𝑓 (𝑥) ∀𝑔 ∈ , 𝑥 ∈ 𝑋 ,

where ⋅ denotes the corresponding group action on each set.

Thus, while an invariant function maps all elements of an orbit to the same value, an
equivariant function ensures that inputs are transformed in a predictable and structured
way under the action of a group.

These two notions form the main tools for incorporating symmetry priors into neural
networks. When groups act on the domain Ω, and this action is extended to signals defined
on Ω, the resulting transformations often correspond to changes that leave the underlying
phenomenon unchanged. By constraining a network to be equivariant or invariant with
respect to such transformations, we embed prior knowledge about the domain directly into
the model, reducing the burden of having to learn these symmetries purely from data.

In chapters 4 and 5, we will see how the permutation group interacts with sets and
graphs. After that, in chapter 6, we will study how the translation group interacts with grids.
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3.3 Scale Separation
Although restricting the hypothesis space to respect the symmetries present in the

data can help mitigate the curse of dimensionality, it may not be sufficient on its own.
The scale separation prior formalizes the idea that phenomenon operating at different
scales can often be modeled independently. Moreover, certain tasks may rely primarily on
information at a specific scale, making it crucial to consider scale explicitly.

For example, in image classification, textures coexist with shapes and objects, often
playing distinct roles depending on the task (see Figure 3.3). Similarly, in graphs, local con-
nectivity patterns (e.g., whether a node is part of a triangle) coexist with global structures
(e.g., the connected component to which the node belongs).

Figure 3.3: Illustration of the role of scale in visual recognition. In the first example, the scene remains

identifiable even after the resolution is significantly reduced—recognition is dominated by global struc-

ture. In contrast, in the second example, a small cropped region is sufficient to recognize the brick

texture, indicating that recognition is driven by local structure.

This observation can be leveraged to reduce the effective dimensionality of our problem,
by coarsening the domain on which the signal is defined. Formally, this can be defined
as following:

Definition 3.7 (Coarsening Operator). Let  = {𝑥 ∶ Ω → } and  ′ = {𝑥 ′ ∶ Ω′ → }
be sets of signals, with |Ω′| ≤ |Ω|. A Coarsening Operator 𝑃 is a function 𝑃 ∶  →  ′

.

The intuition in this definition is that a signal 𝑥 is mapped to a coarser signal 𝑥 ′, which
restricts the signal to a specific scale. This process is illustrated in Figure 3.4.

Of course, knowing in advance how to perform coarsening is often not feasible, as
it is highly task-dependent. For instance, in Figure 3.3, cropping the first image could
remove essential information required to recognize the scene. For this reason, coarsening is
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Figure 3.4: Illustration of a possible graph coarsening process. In this example, each triangle is col-

lapsed into a single node, effectively reducing the number of nodes in the graph and therefore decreas-

ing the dimensionality of the domain.

typically handled within the neural network architecture itself. Common examples include
pooling operations in Convolutional Neural Networks, a topic we will revisit later.

3.4 GDL Blueprint
Now we are ready to combine both geometric priors into the Geometric Deep Learning

Blueprint.

Definition 3.8 (Equivariant Block). Let  = {𝑥 ∶ Ω → },  ′ = {𝑥 ′ ∶ Ω′ → ′} and

 ′
𝑐 = {𝑥 ′𝑐 ∶ Ω′

𝑐 → ′} be sets of signals, with |Ω′
𝑐 | ≤ |Ω′|. Let (, ◦) be a group acting on

Ω,Ω′, Ω′
𝑐 through ⋅. We define the following building blocks:

1. Linear -equivariant layer 𝐸 ∶  →  ′, satisfying 𝐸(𝑔 ⋅ 𝑥) = 𝑔 ⋅ 𝐸(𝑥) for all 𝑔 ∈ 𝐺
and 𝑥 ∈  .

2. Nonlinearity 𝜃 ∶  ′ →  ′
, obtained applying a non-linear function 𝜗 ∶ ′ → ′

coordinate-wise: 𝜃(𝑥 ′)(𝑢′) = 𝜗(𝑥 ′(𝑢′)), for 𝑥 ′ ∈  ′
and 𝑢′ ∈ Ω′

.

3. Coarsening Operator 𝑃 ∶  ′ →  ′
𝑐 .

A -Equivariant Block 𝐵 ∶  →  ′
𝑐 is a composition

𝐵(𝑥) = 𝑃(𝜃(𝐸(𝑥))), 𝑥 ∈  .

This definition specifies a function that not only preserves equivariance but can also
incorporate coarsening of the domain. By defining the right group, operating on specific
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domains and stacking multiple equivariant blocks, one can derive a wide range of ar-
chitectures as special cases of the general blueprint. In practice, however, the choice of
nonlinearities and coarsening operators must be made carefully, since not all of them
preserve equivariance.

A natural question arises: why impose linearity on the equivariant block 𝐸? Linearity
provides a powerful characterization tool. For instance, all linear equivariant maps with
respect to translations turn out to be convolutions, a fact that we will revisit in the next
chapters. Moreover, this constraint aligns with many established architectures, such as
convolutions in CNNs and message passing in GNNs. On the other hand, a composition
of linear functions remains linear, which would severely limit expressivity. To overcome
this, the blueprint allows the interleaving of coordinate-wise nonlinearities (e.g., ReLU or
MLPs applied independently at each site), which expand representational capacity.

It is worth noting that not all architectures adhere strictly to this formulation. Some
omit the coarsening operator altogether, while others relax the requirement that 𝐸 be
linear, thereby sidestepping the need for explicit nonlinearities. Concrete examples of
these variations will be discussed in subsequent chapters.

While stacking equivariant blocks suffices for tasks where the output itself must
transform equivariantly with the input (e.g., semantic segmentation or node classification,
where labels are structured as signals), invariance (as required, for example, in image
classification and graph classification) is not obtained directly from the equivariant blocks.
For this, we need an invariant layer, also referred to as global pooling.

Definition 3.9 (Invariant Layer). Let  = {𝑥 ∶ Ω → } be a set of signals, and  the set

of labels. Let (, ◦) be a group that acts on Ω. A -Invariant Layer is a function 𝐼 ∶  → 
that satisfies

𝐼 (𝑔 ⋅ 𝑥) = 𝐼 (𝑥) for all 𝑥 ∈ 𝑆, 𝑔 ∈ .

This layer maps the transformed signal to the final prediction. By appending an
invariant layer to the end of a sequence of equivariant blocks, we obtain an invariant
neural network.

Many well-known architectures can be understood through this framework by selecting
an appropriate symmetry group and geometric domain. Table 3.1 highlights representative
examples.

In the following chapters, we will explore a few of these architectures. We will examine
sets and graphs under permutation groups, leading to DeepSets and GNNs; show how
Transformers can be interpreted as a special case of GNNs; and finally, derive CNNs from
grids equipped with the translation group.
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Architecture Domain Ω Symmetry Group 
CNN 2D Grid Translation
Spherical CNN Sphere Rotation
Intrinsic / Mesh CNN Manifold Isometry / Gauge symmetry
GNN Graph Permutation
DeepSets Set Permutation
Transformer Complete Graph Permutation
LSTM 1D Grid Time warping

Table 3.1: Examples of neural architectures, their input domains, and corresponding symmetry

groups.
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Chapter 4

Learning on Sets

The content of this chapter closely follows Michael M Bronstein et al. (2021) and
Bronstein, Michael M. (2022a). Sets can be understood as unordered collections of
distinct objects, where repetition plays no role. We begin our exposition of the GDL
blueprint with sets, as they represent the simplest mathematical structure with minimal
geometric assumptions. Moreover, since a set can be viewed as a graph without edges,
many of the ideas developed here naturally extend to graphs. This chapter proceeds by
first defining signals on sets, then examining the group of transformations acting on the
domain, and finally deriving the DeepSets architecture.

4.1 Setup
We start by defining the domain Ω of the signals, which are simply finite sets without

any additional structure. Assume that this set is represented by natural numbers, therefore
Ω = [𝑑]. Consider that the codomain  of the signal 𝑥 is ℝ𝑘 .

One natural way of representing a signal 𝑥 ∶ [𝑑] → ℝ𝑘 is to build a feature matrix

𝑋 ∈ ℝ𝑑×𝑘 , where the 𝑖th row of 𝑋 denotes 𝑥(𝑖),

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑥(1)
𝑥(2)
⋮

𝑥(𝑑)

⎤
⎥
⎥
⎥
⎥
⎦

.

However, this representation creates an implicit node ordering. If we want to use 𝑋 as input
to a neural network 𝑓 , we would require it to have the same output for all permutations

of the rows of 𝑋 , encompassing the idea that orders do not matter for sets. This idea can
be formalized by the permutation group.

4.2 Permutation Symmetry
We start by defining what is a permutation.
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Definition 4.1 (Permutation). Let Ω be a finite set. A function 𝜑 ∶ Ω → Ω is said to be a

permutation if it is a bijection.

One may verify that the set of all permutations of a finite set Ω under function compo-
sition form a group (, ◦), where the identity element is the identity function and inverse
elements are inverse functions. This group acts on Ω by simple function application
𝑔 ⋅ 𝑢 = 𝑔(𝑢), 𝑔 ∈  and 𝑢 ∈ Ω.

More interstingly is how this group acts on the signal 𝑥 . Recall that a group acting
on Ω can be lifted to act (linearly) on  through

(𝑔 ⋅ 𝑥)(𝑢) = 𝑥(𝑔−1 ⋅ 𝑢).

To understand how this manifests in our setup, lets work through an example.

Example 4.1. Let Ω = {1, 2, 3} and 𝑥 ∶ Ω → ℝ, 𝑥(𝑢) = 𝑢 + 3.

Our feature matrix can be written as

𝑋 =
⎡
⎢
⎢
⎣

4
5
6

⎤
⎥
⎥
⎦
.

Let 𝑔 ∶ Ω → Ω be a permutation such that 𝑔(1) = 1, 𝑔(2) = 3 and 𝑔(3) = 2. Therefore,

its inverse is 𝑔−1(1) = 1, 𝑔−1(2) = 3 and 𝑔−1(3) = 2. Analyzing how this transformation affects

the signal yields:

(𝑔 ⋅ 𝑥)(1) = 𝑥(𝑔−1 ⋅ 1) = 𝑥(𝑔−1(1)) = 𝑥(1) = 4,

(𝑔 ⋅ 𝑥)(2) = 𝑥(𝑔−1 ⋅ 2) = 𝑥(𝑔−1(2)) = 𝑥(3) = 6,

(𝑔 ⋅ 𝑥)(3) = 𝑥(𝑔−1 ⋅ 3) = 𝑥(𝑔−1(3)) = 𝑥(2) = 5.

The transformed feature matrix can be written as

𝑋 =
⎡
⎢
⎢
⎣

4
6
5

⎤
⎥
⎥
⎦
.

Therefore, although permutations do not affect the underlying domain, they permute
the signal according to the permutation rule. In the example, each coordinate is mapped
to the next, and the last is mapped back to the first. At a first glance it may seem as we
are overcomplicating the notation of permutations, but we highlight that the power of
the GDL framework is on describing a wide variety of transformations on different data.
More complicated transformations will be analyzed in the next chapter.

A more linear algebra friendly way of representing permutations is through permu-

tation matrices.
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Definition 4.2. Let 𝐼 ∈ ℝ𝑑×𝑑
be the identity matrix. Let 𝜑 ∶ [𝑑] → [𝑑] be a permutation.

The permutation matrix of 𝜑, denoted by 𝑃 , is defined as

𝑃𝑖 = 𝐼𝜑−1(𝑖).

In other words, if one considers a signal that maps the integer 𝑖 to the canonical vector
𝑒𝑖 (i. e. 𝑒𝑖 ∈ ℝ𝑑 such that the 𝑖-th entry is equal to one and the others are equal to 0), and
the identity matrix to be its feature matrix, obtaining the permutation matrix is the same
as allowing the permutaion to act on such signal and retrieving the transformed feature
matrix. This representation is useful because permuting the rows of an abribrary feature
matrix 𝑋 can be done by simply multiplying the matrix in the left by the appropriate
permutation matrix (i. e. (𝑃𝑋 )𝑖 = 𝑋𝜑−1(𝑖)).

We are now ready to express the permutation invariance and equivariance for neural
networks operating on feature matrices.

Definition 4.3 (Permutation Invariance). A function 𝑓 ∶ ℝ𝑑×𝑘 →  , where  is any set, is

said to be permutation invariant if, for all permutation matrices 𝑃 ∈ ℝ𝑑×𝑑
and all 𝑋 ∈ ℝ𝑑×𝑘

,

𝑓 (𝑃𝑋) = 𝑓 (𝑋 ).

Equivalently,

Definition 4.4 (Permutation Equivariance). A function 𝑓 ∶ ℝ𝑑×𝑘 → ℝ𝑑×𝑘′
is said to be

permutation equivariant if, for all permutation matrices 𝑃 ∈ ℝ𝑑×𝑑
and all 𝑋 ∈ ℝ𝑑×𝑘

,

𝑓 (𝑃𝑋) = 𝑃𝑓 (𝑋 ).

These are the two concepts used to restrict the architectures with the geometric
constraints for operating on sets. Next, we will see examples of how this properties can
be accomplished.

4.3 DeepSets

We will now show how these constraints can be enforced in a neural network archi-
tecture, exemplifying how the DeepSets (Zaheer et al., 2017) fit the framework.

We will start by designing a permutation equivariant block. We will perform two small
changes to the general blueprint (Definition 3.8). First, we won’t be applying any coarsening
operator. Second, we will not require the equivariant transformation to be linear.

The key insight for achieving permutation equivariance is through weight sharing.
The DeepSets architecture accomplish that by applying the same function on each row
of the feature matrix. We will go in details in this architecture, showing how to apply
this concepts with multi-layer perceptrons (MLPs). To start, we must first define the MLP.
This will be accomplished using affine layers.
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Definition 4.5 (Affine Layer). Let 𝐴 ∈ ℝ𝑘′×𝑘
and 𝑏 ∈ ℝ𝑘′

. An affine layer function 𝑓𝐴,𝑏 ∶
ℝ𝑘 → ℝ𝑘′

is a function

𝑓𝐴,𝑏(𝑥) = 𝐴𝑥 + 𝑏.

We say that 𝐴 and 𝑏 are the learnable parameters.

With this, we can define a Multi-layer Perceptron.

Definition 4.6 (Multi-layer Perceptron). Let 𝑘0, ..., 𝑘𝑙 ∈ ℕ and let  = {(𝐴𝑖 , 𝑏𝑖)}𝑙𝑖=1 be a

familly of ordered pairs of matrices such that 𝐴𝑖 ∈ ℝ𝑘𝑖×𝑘𝑖−1
and 𝑏𝑖 ∈ ℝ𝑘𝑖

, with corresponding

affine layers 𝑓𝐴𝑖 ,𝑏𝑖 . Let 𝜃𝑖 ∶ ℝ𝑘𝑖 → ℝ𝑘𝑖
, for 𝑖 ∈ [𝑙 − 1] be a point-wise non-linearity (such as

ReLU or sigmoid). A Multi-layer Perceptron is a function MLP ∶ ℝ𝑘0 → ℝ𝑘𝑙
obtained by

composing Affine Layers and non-linearities:

MLP = 𝑓𝐴𝑙 ,𝑏𝑙 ◦𝜃𝑙−1◦𝑓𝐴𝑙−1,𝑏𝑙−1◦ … ◦𝜃2◦𝑓𝐴2,𝑏2◦𝜃1◦𝑓𝐴1,𝑏1 .

We say that  are the learnable parameters.

For classification tasks, usually the softmax function is appended after the last affine
layer.

Regarding expressivity, the Universal Approximation Theorem states that a MLP with
sufficient parameters and a suitable non-linear activation can approximate any continuous
function (under mild assumptions) arbitrarily well. In other words, given enough hidden
units, an MLP is expressive enough to come arbitrarily close to any target continuous
mapping (Cybenko, 1989; Hornik, 1991).

The DeepSets accomplish a permutation equivariant representation by applying the
same MLP on every row of the feature matrix. To match the language of the GDL blueprint,
one can consider the equivariant block to be one affine layer (applied row-wise) and a
non-linearity applied in every row of the input matrix. Each one of these equivariant
blocks would match one pair of affine layer and nonlinearity from the MLP, where the
last equivariant block does not have the nonlinearities. However, to simplify notation, we
will consider simply applying the MLP on every row.

Let MLP ∶ ℝ𝑘 → ℝ𝑘′ be a multi-layer perceptron and 𝑋 ∈ ℝ𝑑×𝑘 be a feature matrix.
A permutation equivariant representation (according to Definition 4.4) 𝐻 can be obtained
by computing 𝐻𝑖 = MLP (𝑋𝑖) for all 𝑖 ∈ [𝑑], that is,

𝐻 =

⎡
⎢
⎢
⎢
⎢
⎣

MLP (𝑋1)
MLP (𝑋2)

⋮
MLP (𝑋𝑑 ) .

⎤
⎥
⎥
⎥
⎥
⎦

The reader may easily verify that this indeed is permutation equivariant. All that is left
to complete the DeepSets architecture is to build an invariant layer. This invariant layer
aggregates the representations 𝐻𝑖 and maps them to the final prediction. This aggregation
is performed trough a permutation-invariant operator (e. g. sum, mean, standard deviation,
or max), and the final prediction is obtained by feeding the aggregated representation
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into another MLP. This can be formalized as following:

Definition 4.7 (DeepSets). Let MLP ∶ ℝ𝑘 → ℝ𝑘′
and MLP ′ ∶ ℝ𝑘′ →  be MLPs. Let

⊕ denote any permutation-invariant operator. A DeepSet is a function DS , ′ ∶ ℝ𝑑×𝑘 →  ,

defined by

DS , ′(𝑋 ) = MLP ′

(
⨁
𝑖∈[𝑑]

MLP (𝑋𝑖))

It is straightforward to verify that the construction above yields a permutation-invariant
function, so we omit the proof. Instead, we now turn to a more interesting and fundamental
aspect of the DeepSets framework: its expressive power. In particular, we will show that
any function defined on sets can be represented using a similar architectural form.

Theorem 4.1. Let 𝜒 be a discrete set and let 2𝜒 denote its power set (i. e. the set of all subsets

of 𝜒 ). Let 𝑓 ∶ 2𝜒 →  be any function. Then there exist functions 𝜙 and 𝜌 such that, for all

𝑆 ∈ 2𝜒 ,

𝑓 (𝑆) = 𝜌
(
∑
𝑠∈𝑆

𝜙(𝑠)
)
.

Proof. We prove the statement by explicit construction. Since 𝜒 is discrete, fix an arbitrary
enumeration 𝜓 ∶ 𝜒 → ℕ. Define

𝜙(𝑠) = 2𝜓(𝑠) for all 𝑠 ∈ 𝜒 .

Consider any subset 𝑆 ∈ 2𝜒 . The value ∑𝑠∈𝑆 𝜙(𝑠) corresponds to the binary integer whose
𝑘-th bit is 1 if and only if 𝜓 −1(𝑘) ∈ 𝑆. Therefore, this sum uniquely encodes the subset 𝑆.
More formally, if 𝑆, 𝐿 ∈ 2𝜒 and 𝑆 ≠ 𝐿, then

∑
𝑠∈𝑆

𝜙(𝑠) ≠ ∑
𝑙∈𝐿

𝜙(𝑙).

Thus, the mapping
𝑆 ⟼ ∑

𝑠∈𝑆
𝜙(𝑠)

is injective.

We now define 𝜌 on the image of this map by assigning

𝜌
(
∑
𝑠∈𝑆

𝜙(𝑠)
)

= 𝑓 (𝑆), for all 𝑆 ∈ 2𝜒 .

Since the encoding is injective, this definition is consistent and 𝜌 is well defined. Therefore,
for every 𝑆 ∈ 2𝜒 ,

𝑓 (𝑆) = 𝜌
(
∑
𝑠∈𝑆

𝜙(𝑠)
)
,

completing the proof.
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Notably, Zaheer et al., 2017 extend the result to the case where 𝜒 is not necessarily
discrete. Since the general proof introduces additional technical considerations, we do
not include it here.
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Chapter 5

Learning on Graphs

The content of this chapter closely follows Michael M Bronstein et al. (2021), Bron-
stein, Michael M. (2022a) and Bronstein, Michael M. (2022b). Graphs can be under-
stood as sets augmented with connections between the elements. Graphs are everywhere,
and are used to model a vast collections of phenomenon, from molecules, to social net-
works and maps.

In this chapter, first, we will define signals on graphs, then we will examine how the
permutation group acts on these objects. Next, we will apply the GDL blueprint to derive
networks espacialized on graph data: Graph Neural Networks (GNNs). Finally, we will see
how to fit the popular Transformer architecture as as special case of the GNN.

5.1 Setup
There are multiple ways of defining a graph. Here, we consider that a graph 𝐺 is an

ordered pair (𝑉 , 𝐸) of two finite sets. The set 𝑉 is said to be the set of vertices (or nodes) of
the graph 𝐺. The set 𝐸 contains sets of unordered pairs of elemnts of 𝑉 . We say that two
vertices 𝑢, 𝑣 ∈ 𝑉 are adjacent if {𝑢, 𝑣} ∈ 𝐸. We call {𝑢, 𝑣} (usually denotes simply by 𝑢𝑣 or
𝑣𝑢, since order does not matter) an edge of𝐺 and, similarly, we call 𝐸 the set of edges of𝐺.

Edges can be represented as adjacency matrices.

Definition 5.1 (Adjacency matrix). Let 𝐺 = (𝑉 , 𝐸) be a graph. The adjacency matrix

𝐴 ∈ {0, 1}𝑉×𝑉 of 𝐺 is defined as

𝐴𝑖𝑗 =

{
1, if 𝑖𝑗 ∈ 𝐸,

0, otherwise.

It is immediate of this definitions that 𝐴 is symmetric. It is important to highlight
that digraphs (i. e. directed graphs) can be obtained by changing the definition of 𝐸 to
contain ordered pairs instead of sets. In this case, there will be a distinction between
edges 𝑢𝑣 and 𝑣𝑢, in a way that the adjacency matrix will not be symmetric in all cases.
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In any case, let us proceed with the given definition of graphs. To better understand it,
consider the following example.

Example 5.1. Consider the graph whose vertices form a cycle, with one additional edge

connecting two non-adjacent vertices (a chord). Its vertex and edge sets are:

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5},

𝐸 = {{𝑣1, 𝑣2}, {𝑣2, 𝑣3}, {𝑣3, 𝑣4}, {𝑣4, 𝑣5}, {𝑣5, 𝑣1}, {𝑣1, 𝑣3}}.

A possilbe graphical representation is given in Figure 5.1.

Figure 5.1: An example of a graph.

Although we can also have features for the edges and for the whole graph, let us
consider now graphs with features only in the vertices. That is, the signal domain is Ω = 𝑉 .
For simplicity, let us assume that 𝑉 is represented by the natural numbers, i. e. Ω = 𝑉 = [𝑑].
Therefore, the feature matrix 𝑋 ∈ ℝ𝑑×𝑘 of the signal 𝑥 ∶ [𝑑] → ℝ𝑘 can be defined exactly
as in the case of sets, i. e. 𝑋𝑖 = 𝑥(𝑖), for all 𝑖 ∈ [𝑑].

Therefore, for a graph 𝐺, combining the adjacency matrix 𝐴 with the feature matrix 𝑋
provides a representation of both the signal and the structure of the graph, serving as input
to a neural network. However, just like in the previous case with sets, this representation
assumes an implicit ordering of the nodes. Therefore, we must once again rely on invariance
and equivariance to the permutation group to enforce the prior that the ordering of the
nodes do not matter. The key difference here is that we must also permute the adjacency
matrix accordingly, to preserve the structure of the graph and only relabel its nodes. When
applying a permutation matrix 𝑃 , this amounts to computing 𝑃𝐴𝑃⊤.

Therefore, permutation invariance and equivariance for graphs can be defined as
following:
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Definition 5.2 (Permutation Invariance). A function 𝑓 ∶ ℝ𝑑×𝑘 × ℝ𝑑×𝑑 →  , where  is

any set, is said to be permutation invariant if, for all permutation matrices 𝑃 ∈ ℝ𝑑×𝑑
, all

𝑋 ∈ ℝ𝑑×𝑘
, and all 𝐴 ∈ ℝ𝑑×𝑑

,

𝑓 (𝑃𝑋 , 𝑃𝐴𝑃⊤) = 𝑓 (𝑋 , 𝐴).

Equivalently,

Definition 5.3 (Permutation Equivariance). A function 𝑓 ∶ ℝ𝑑×𝑘 × ℝ𝑑×𝑑 → ℝ𝑑×𝑘′
is said to

be permutation equivariant if, for all permutation matrices 𝑃 ∈ ℝ𝑑×𝑑
, all 𝑋 ∈ ℝ𝑑×𝑘

, and all

𝐴 ∈ ℝ𝑑×𝑑
,

𝑓 (𝑃𝑋 , 𝑃𝐴𝑃⊤) = 𝑃𝑓 (𝑋 ).

In this context, a useful tool for designing equivariant and invariant neural networks
is the idea of neighbourhoods of vertices:

Definition 5.4 (Neighbourhood). Let 𝐺 = (𝑉 , 𝐸) be a graph with adjacency matrix 𝐴 ∈
ℝ𝑑×𝑑

. The neighbourhood of 𝑣 ∈ 𝑉 , denoted by 𝑁𝐴(𝑣), is defined as

𝑁𝐴(𝑣) ∶= {𝑢 ∈ 𝑉 ∶ 𝐴𝑢𝑣 = 1}.

Similarly, for 𝑣 ∈ 𝑉 , we can define𝑋𝑁(𝑣) ∈ ℝ𝑁(𝑣)×𝑘 to denote the feature matrix restricted
to the neighbourhood of 𝑣 (i. e. a matrix that contains the features of the nodes in the
neighbourhood of 𝑣).

Next, we will see how to explore this concept to design a permutation equivariant
layer for graphs.

5.2 Graph Neural Networks
A key idea that can be explored to create permutation equivariant layers for graphs

is the idea of locality. Each node updates its representation using the information from
its neighbors. Formally, this yields the following definiton:

Definition 5.5 (GNN Layer). Let 𝐺 = (𝑉 , 𝐸) be a graph with corresponding adjacency

matrix 𝐴 ∈ ℝ𝑑×𝑑
and feature matrix 𝑋 ∈ ℝ𝑑×𝑘

. Define 𝑑 = ⋃𝑖∈{0}∪[𝑑] ℝ𝑖×𝑑
to be the set of all

matrices with up to 𝑑 rows. Let 𝜎 ∶ ℝ𝑘 ×𝑑 → ℝ𝑘′
be a permutation invariant function w.

r. t. the second argument (i. e. 𝜎(ℎ, 𝑃𝐻) = 𝜎(ℎ, 𝐻 ) for all permutation matrices 𝑃 ). A GNN

layer 𝑓 ∶ ℝ𝑑×𝑘 × ℝ𝑑×𝑑 → ℝ𝑑×𝑘′
is a function defined by

𝑓 (𝑋 , 𝐴) =

⎡
⎢
⎢
⎢
⎢
⎣

𝜎(𝑋1, 𝑋𝑁𝐴(1))
𝜎(𝑋2, 𝑋𝑁𝐴(2))

⋮
𝜎(𝑋𝑑 , 𝑋𝑁𝐴(𝑑))

⎤
⎥
⎥
⎥
⎥
⎦

.

The function 𝜎 is usually called a diffusion, propagation or message passing. Next, we
show that GNN layers are indeed permutation invariant. Before, we will prove a result
that will help with the proof.
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Lemma 5.1. Let 𝑓 ∶ ℝ𝑑×𝑘 → ℝ𝑑×𝑘′
be a permutation invariant function and 𝐶 ⊆ [𝑑]. Let

𝑃 ∈ ℝ𝑑×𝑑
be a permutation matrix associated with perutation 𝜑 ∶ [𝑑] → [𝑑]. Then, for all

𝑋 ∈ ℝ𝑑×𝑘
,

𝑓 ((𝑃𝑋)𝐶) = 𝑓 (𝑋𝜑−1(𝐶)),

where 𝜑−1(𝐶) denotes the image of 𝜑−1
over 𝐶 , i. e. 𝜑−1(𝐶) = {𝜑−1(𝑐) ∶ 𝑐 ∈ 𝐶}.

Proof. Let 𝑐1, 𝑐2, ..., 𝑐𝑙 ∈ 𝐶 ⊆ [𝑑], such that 𝑐1 < 𝑐2 < ... < 𝑐𝑙 . Note that,

(𝑃𝑋 )𝐶 =
⎡
⎢
⎢
⎢
⎣

(𝑃𝑋)𝑐1
(𝑃𝑋 )𝑐2

⋮
(𝑃𝑋 )𝑐𝑙

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑋𝜑−1(𝑐1)
𝑋𝜑−1(𝑐2)

⋮
𝑋𝜑−1(𝑐𝑙 )

⎤
⎥
⎥
⎥
⎦

,

which is clearly a permutation of the rows of 𝑋𝜑−1(𝐶). Since 𝑓 is permutation invariant, we
have 𝑓 ((𝑃𝑋)𝐶) = 𝑓 (𝑋𝜑−1(𝐶)).

We are now ready to state and prove GNN permutation equivariance.

Theorem 5.1. Let 𝑓 ∶ ℝ𝑑×𝑘 × ℝ𝑑×𝑑 → ℝ𝑑×𝑘′
be a GNN layer with corresponding function

𝜎 ∶ ℝ𝑘 ×𝑑 → ℝ𝑘′
. Then,

𝑓 (𝑃𝑋 , 𝑃𝐴𝑃⊤) = 𝑃𝑓 (𝑋 , 𝐴),

for all permutation matrices 𝑃 ∈ ℝ𝑑×𝑑
, all 𝑋 ∈ ℝ𝑑×𝑘

and all 𝐴 ∈ ℝ𝑑×𝑑
.

Proof. Let 𝑃 ∈ ℝ𝑑×𝑑 be a permutation matrix associated with permutation 𝜑 ∶ [𝑑] → [𝑑].
Let 𝐺 = (𝑉 , 𝐸) be a graph with feature matrix 𝑋 ∈ ℝ𝑑×𝑘 and adjacency matrix 𝐴 ∈ ℝ𝑑×𝑑 .
Let 𝑓 ∶ ℝ𝑑×𝑘 × ℝ𝑑×𝑑 → ℝ𝑑×𝑘′ be a GNN layer with associated function 𝜎 ∶ ℝ𝑘 ×𝑑 → ℝ𝑘′ .
Then, for 𝑖 ∈ [𝑑],

𝑓 (𝑃𝑋 , 𝑃𝐴𝑃⊤)𝑖 =𝜎((𝑃𝑋)𝑖 , (𝑃𝑋 )𝑁𝑃𝐴𝑃⊤ (𝑖))
=𝜎(𝑋𝜑−1(𝑖), (𝑃𝑋 )𝑁𝑃𝐴𝑃⊤ (𝑖))
=𝜎(𝑋𝜑−1(𝑖), 𝑋𝜑−1(𝑁𝑃𝐴𝑃⊤ (𝑖))),

where the last equality holds because of Lemma 5.1. Now, note that

𝜑−1(𝑁𝑃𝐴𝑃⊤(𝑖)) =𝜑−1({𝑗 ∈ [𝑑] ∶ (𝑃𝐴𝑃⊤)𝑖𝑗 = 1})
=𝜑−1({𝑗 ∈ [𝑑] ∶ 𝐴𝜑−1(𝑖)𝜑−1(𝑗) = 1})
=𝜑−1({𝜑(𝑗) ∈ [𝑑] ∶ 𝐴𝜑−1(𝑖)𝑗 = 1})
={𝑗 ∈ [𝑑] ∶ 𝐴𝜑−1(𝑖)𝑗 = 1}
=𝑁𝐴(𝜑−1(𝑖)).
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Therefore, we have

𝑓 (𝑃𝑋 , 𝑃𝐴𝑃⊤)𝑖 =𝜎(𝑋𝜑−1(𝑖), 𝑋𝜑−1(𝑁𝑃𝐴𝑃⊤ (𝑖)))
=𝜎(𝑋𝜑−1(𝑖), 𝑋𝑁𝐴(𝜑−1(𝑖)))
=𝑓 (𝑋 , 𝐴)𝜑−1(𝑖)
=(𝑃𝑓 (𝑋 , 𝐴))𝑖 .

Since 𝑓 (𝑃𝑋 , 𝑃𝐴𝑃⊤)𝑖 = (𝑃𝑓 (𝑋 , 𝐴))𝑖 holds for all 𝑖 ∈ [𝑑], we have

𝑓 (𝑃𝑋 , 𝑃𝐴𝑃⊤) = 𝑃𝑓 (𝑋 , 𝐴).

Now that we have a framework for GNN layers, it remains to specify how to implement
𝜎 . Notably, most of GNN layers fall under 3 categories: convolutional, attentional, and
message-passing.

Let 𝜚 ∶ ℝ𝑘 → ℝ𝑘′ and 𝜗 ∶ ℝ𝑘 × ℝ𝑘′ → ℝ𝑘′′ be two learnable functions (e. g. MLPs). A
convolutional GNN layer can be generically expressed as

𝜎(𝑋𝑖 , 𝑋𝑁𝐴(𝑖)) = 𝜗(𝑋𝑖 , ⨁
𝑗∈𝑁𝐴(𝑖)

𝑐𝑖𝑗𝜚(𝑋𝑗)),

where ⊕ denotes any permutation invariant aggregator (e. g. sum), and 𝑐𝑖𝑗 are constant
scalars (i. e. not learnable). Likewise, an attentional GNN can be expressed as

𝜎(𝑋𝑖 , 𝑋𝑁𝐴(𝑖)) = 𝜗(𝑋𝑖 , ⨁
𝑗∈𝑁𝐴(𝑖)

𝑎(𝑋𝑖 , 𝑋𝑗)𝜚(𝑋𝑗)),

where 𝑎 ∶ ℝ𝑘 × ℝ𝑘 → ℝ is a learnable function, called the self-attention mechanism, which
is usually normalized using softmax across all neighbors.

Finally, the most general form of GNN is the message-passing GNN, which defines 𝜎 by

𝜎(𝑋𝑖 , 𝑋𝑁𝐴(𝑖)) = 𝜗(𝑋𝑖 , ⨁
𝑗∈𝑁𝐴(𝑖)

𝑚(𝑋𝑖 , 𝑋𝑗)),

where 𝑚 ∶ ℝ𝑘 × ℝ𝑘 → ℝ𝑘′ is a learnable message function.

One important thing to notice is that these approaches are sorted in order of increasing
generality. Attentional GNNs may represent convolutional GNNs where the attention
mechanism is simply a look-up table (i. e. 𝑎(𝑋𝑖 , 𝑋𝑗) = 𝑐𝑖𝑗) and message-passing GNNs
can implement attentional GNNs by propagating only the senders node features (i. e.
𝑚(𝑋𝑖 , 𝑋𝑗) = 𝑎(𝑋𝑖 , 𝑋𝑗)𝜚(𝑋𝑗)).

GNN layers are usually interleaved with non-linearities, but commonly not with a
coarsening operator. Once the representations have been updated for multiple layers,
they can be used to perform vertex level tasks, pairwise (invariantly) aggregated for edge
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level tasks or invariantly aggregated for the whole graph for graph level tasks, following
the GDL blueprint.

Regarding expressivity, it is easy to note that not all permutation equivariant operations
can be represented as message passing (e. g. global averaging). In fact, it is known that
message-passing GNNs are at most as expressive as the Weisfeiler–Lehman test (Xu et al.,
2018). One type of message-passing GNN that matches WL-test expressivity is the GIN
(Xu et al., 2018).

Naturally, the ideas presented can be extended to edge and graph-level features. How-
ever, we will keep the discussion up to node level featuers, as it suffices to exemplify
the GDL framework.

5.3 Transformers as GNNs
The NLP field has been profoundly transformed by the introduction of the Transformer

architecture (Vaswani et al., 2017). Contrary to the common view that Transformers are
inherently sequence-based models, one can derive their core computational primitive—the
self-attention mechanism—from the perspective of attentional Graph Neural Networks
(GNNs). In this section, we present the fundamental components of the Transformer
architecture and outline how they naturally arise from, and relate to, GNN formulations.
Our exposition follows the interpretations developed in Joshi, 2020; Michael M Bronstein
et al., 2021.

We start by explaining the transformer. We will use standard NLP notation and later
link to GDL notation.

Consider a sentence (𝑠1, … , 𝑠𝑘), where each 𝑠𝑖 denotes a token (i.e., a subword unit).
Each token 𝑠𝑖 is associated with an initial embedding ℎ(0)𝑖 ∈ ℝ𝑑 , which encodes both its
semantic content and its position within the sequence (via positional encodings).

A Transformer layer updates the representation of every token by aggregating infor-
mation from all other tokens in the sentence. Which tokens should influence the update of
a given representation is not predetermined; instead, it is learned during training through
the self-attention mechanism. Formally,

ℎ𝑙+1𝑖 = ∑
𝑗∈[𝑘]

𝑤𝑖𝑗(𝑉ℎ𝑙𝑗), where 𝑤𝑖𝑗 =
𝑒(𝑄ℎ𝑖 )⊤𝐾ℎ𝑗

∑𝑝∈[𝑘] 𝑒(𝑄ℎ𝑖 )
⊤𝐾ℎ𝑝

where 𝑄, 𝐾 , and 𝑉 are learnable projection matrices. In practice, Transformer layers
include additional components. For instance, self-attention is computed multiple times
using distinct sets of (𝑄, 𝐾, 𝑉 )matrices; the resulting attention heads are then concatenated
and projected back to the model dimension. Subsequently, a LayerNorm operation and a
position-wise MLP are applied before the updated token representation is passed to the
next layer. For simplicity, we restrict our discussion to a single self-attention head.

Next, we will show that one can describe the self-attention mechanism as a GNN layer.
For this, consider the set of all tokens in the sentence as a complete graph. That is, the
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vertices are 𝑆 = 𝑠1, ..., 𝑠𝑘 and every vertex is connected to every vertex. Define the signal
that maps tokens to embeddings 𝑥(𝑠𝑖) = ℎ0𝑖 , 𝑖 ∈ [𝑘] and consider applying the attentional
GNN layer to update the representation of the 𝑖-th token of the sentence. That is,

ℎ1𝑖 = 𝜗(ℎ
0
𝑖 ,⨁

𝑗∈[𝑘]
𝑎(ℎ0𝑖 , ℎ

0
𝑗 )𝜚(ℎ

0
𝑗 ))

Note that the invariant operator ranges from 1 to 𝑘 because we are considering a
complete graph. Define the functions 𝜗(𝑎, 𝑏) = 𝑏, the aggregation operator ⨁ = ∑, the
attention weight function 𝑎(ℎ(0)𝑖 , ℎ

(0)
𝑗 ) = 𝑤𝑖𝑗 , and the value transformation 𝜚(ℎ(0)𝑗 ) = 𝑉ℎ(0)𝑗 .

Under these choices, the resulting update rule coincides with the self-attention mechanism.

At first glance, this appears to contradict the common view of Transformers as purely
sequence-based models. Interpreting Transformers as GNNs makes explicit the need
for positional encodings: without them, all tokens would be indistinguishable under
permutation of the input.
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Chapter 6

Learning on Grids

The content of this chapter closely follows Michael M Bronstein et al. (2021) and
Bronstein, Michael M. (2022c). Grids can be viewed as a particular class of graphs whose
adjacency structure follows a regular, grid-like pattern. Typical examples include images
and videos, where each pixel interacts with its spatial neighbors.

This chapter begins by formalizing grids and the signals defined on them. We then
examine the translation group acting on these domains. Finally, we show how convolution
induces translation equivariance and how convolutional neural networks (CNNs) leverage
this property to achieve remarkable performance.

6.1 Setup

We start by defining the domain Ω of the signals, i. e., the grids. In this section, we will
work with 2D grids, since they are used to represent images. Therefore, a 𝑑 × 𝑑 grid can be
defined as a set of ordered pairs, ranging from 0 to 𝑑−1. That is,Ω = {0, ..., 𝑑−1}×{0, ..., 𝑑−1}.
Regarding the structure of the grid, we consider that node (𝑖, 𝑗) ∈ Ω is adjacent to 4
other nodes: (𝑖 + 1 mod 𝑑, 𝑗), (𝑖, 𝑗 + 1 mod 𝑑), (𝑖 − 1 mod 𝑑, 𝑗), (𝑖, 𝑗 − 1 mod 𝑑). Note that this
represents grids that are adjacent across borders. We do this for mathematical simplicity.

As for the signal, let us consider that the image  of the signal 𝑥 are the real numbers
ℝ (i. e.  = ℝ). This is sufficient to encode grayscale images and simplifies mathematics.
Notably, one could consider a vector space of more dimensions (yielding, for example,
images of more channels). However, this adds the complexity of manipulating tensors (i.
e. higher dimensionar matrices) instead of matrices.

A natural way of representing this is through a matrix 𝑋 ∈ ℝΩ s. t. 𝑋𝑖𝑗 = 𝑥(𝑖, 𝑗), where
each entry of the matrix corresponds to the value of the signal in the corresponding
node 𝑋𝑖𝑗 = 𝑥(𝑖, 𝑗).
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6.2 Translation Symmetry
To derive convolutional neural networks, we are interested in the translation group. A

translation can be understood as a special case of permutation.

Definition 6.1 (Translation). Let Ω = {0, ..., 𝑑 − 1} × {0, ..., 𝑑 − 1}. Let 𝑚, 𝑛 ∈ {0, ..., 𝑑 − 1}.

A function 𝜑𝑚,𝑛 ∶ Ω → Ω is said to be a translation if it has the form

𝜑𝑚,𝑛(𝑖, 𝑗) = (𝑖 + 𝑚 mod 𝑑, 𝑗 + 𝑛 mod 𝑑).

Similarly to permutations, one may verify that the set of all translations of Ω under
function composition form a group. The identity element is the identity function, and
inverse elements are inverse functions (i. e. 𝜙−1

𝑚,𝑛 = 𝜙−𝑚,−𝑛). This group acts on Ω by simple
function application.

Recall that a group acting on Ω can be lifted to act (linearly) on  . In this case, this
amounts to

(𝜙𝑚,𝑛 ⋅ 𝑥)(𝑖, 𝑗) = 𝑥(𝜙−1
𝑚,𝑛 ⋅ (𝑖, 𝑗)) = 𝑥(𝑖 − 𝑚 mod 𝑑, 𝑗 − 𝑛 mod 𝑑).

A more linear algebra friendly way of representing translations is through shift op-
erators. They can be obtained by using two permutation matrices. Consider a matrix 𝑋
that represents the signal 𝑥 . Suppose that we want to obtain the matrix 𝑋 ′ that represents
the signal 𝜑𝑚,𝑛 ⋅ 𝑥 .

Define the permutation 𝜛𝑚 ∶ {0, ..., 𝑑 − 1} → {0, ..., 𝑑 − 1} that maps 𝑖 to 𝑖 + 𝑚 mod 𝑑 .
Likewise, define 𝜛𝑛 and let 𝑆𝑚 and 𝑆𝑛 be their respective permutation matrices. 𝑋 ′ can
be obtained by computing

𝑋 ′ = 𝑆𝑚𝑋(𝑆𝑛)⊤

We are now ready to define invariance and equivariance for the translation group.

Definition 6.2 (Translation Invariance). A function 𝑓 ∶ ℝΩ →  , where  is any set, is

said to be translation invariant if, for all 𝑚, 𝑛 ∈ {0, ..., 𝑑 − 1}, all 𝑋 ∈ ℝΩ
,

𝑓 (𝑆𝑚𝑋(𝑆𝑛)⊤) = 𝑓 (𝑋 ).

Equivalently,

Definition 6.3 (Translation Equivariance). A function 𝑓 ∶ ℝΩ → ℝΩ
is said to be transla-

tion equivariant if, for all 𝑚, 𝑛 ∈ {0, ..., 𝑑 − 1}, all 𝑋 ∈ ℝΩ
,

𝑓 (𝑆𝑚𝑋(𝑆𝑛)⊤) = 𝑆𝑚𝑓 (𝑋 )(𝑆𝑛)⊤.

Next, we will se how convolutions lie at the heart of developing translation equivariant
architectures.
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6.3 Convolution

Now, we will explain what is the convolution operator. Furthermore, we will prove
that convolutions are both linear and translation equivariant. More than that, we will
prove that every translation equivariant linear function can be written as a convolution,
showing expressivity.

Definition 6.4 (Convolution). Let 𝑥 ∶ Ω → ℝ be the input signal and 𝑤 ∶ {0, ..., 𝑘 − 1} ×
{0, ..., 𝑘 − 1} → ℝ be the convolution kernel. The convolution operator ∗ is defined as:

(𝑥 ∗ 𝑤)(𝑖, 𝑗) =
𝑘−1

∑
𝑚=0

𝑘−1

∑
𝑛=0

𝑤(𝑚, 𝑛) 𝑥(𝑖 − 𝑚, 𝑗 − 𝑛),

where 𝑥 ∗ 𝑤 ∶ Ω → ℝ.

This can be interpreted as sliding the kernel 𝑤 over the signal 𝑥 and computing
inner products.

Notably, 𝑥(𝑖 − 𝑚, 𝑗 − 𝑛) may fall ourside the domain {0, ..., 𝑑 − 1} × {0, ..., 𝑑 − 1}. In that
case, a padding rule is necessary. Usually, people set values outside the domain to be 0.
However, this breaks equivariance. Here, we will consider circular padding. That is,

𝑥(𝑖 − 𝑚, 𝑗 − 𝑛) = 𝑥(𝑖 − 𝑚 mod 𝑑, 𝑗 − 𝑛 mod 𝑑).

Next, we prove that convolution is linear and translation equivariant

Theorem 6.1 (Convolution Linearity). Let 𝑥, 𝑦 ∶ {0, ..., 𝑑 − 1} × {0, ..., 𝑑 − 1} → ℝ be input

signals and 𝑤 ∶ {0, ..., 𝑘 − 1} × {0, ..., 𝑘 − 1} → ℝ be a convolution kernel. Let 𝛼 ∈ ℝ Then,

(𝑥 ∗ 𝑤) + (𝑦 ∗ 𝑤) = (𝑥 + 𝑦) ∗ 𝑤

and

𝛼(𝑥 ∗ 𝑤) = (𝛼𝑥) ∗ 𝑤.

Proof. Let 𝑖, 𝑗 ∈ {0, ..., 𝑑 − 1}. First, note that

((𝑥 + 𝑦) ∗ 𝑤) (𝑖, 𝑗) =
𝑘−1

∑
𝑚=0

𝑘−1

∑
𝑛=0

𝑤(𝑚, 𝑛) (𝑥 + 𝑦)(𝑖 − 𝑚, 𝑗 − 𝑛)

=
𝑘−1

∑
𝑚=0

𝑘−1

∑
𝑛=0

𝑤(𝑚, 𝑛) (𝑥(𝑖 − 𝑚, 𝑗 − 𝑛) + 𝑦(𝑖 − 𝑚, 𝑗 − 𝑛))

=
𝑘−1

∑
𝑚=0

𝑘−1

∑
𝑛=0

𝑤(𝑚, 𝑛) 𝑥(𝑖 − 𝑚, 𝑗 − 𝑛) + 𝑤(𝑚, 𝑛) 𝑦(𝑖 − 𝑚, 𝑗 − 𝑛)

=
𝑘−1

∑
𝑚=0

𝑘−1

∑
𝑛=0

𝑤(𝑚, 𝑛) 𝑥(𝑖 − 𝑚, 𝑗 − 𝑛) +
𝑘−1

∑
𝑚=0

𝑘−1

∑
𝑛=0

𝑤(𝑚, 𝑛) 𝑦(𝑖 − 𝑚, 𝑗 − 𝑛)

= ((𝑥 ∗ 𝑤) + (𝑦 ∗ 𝑤)) (𝑖, 𝑗)
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Therefore, (𝑥 ∗ 𝑤) + (𝑦 ∗ 𝑤) = (𝑥 + 𝑦) ∗ 𝑤 . Likewise,

𝛼(𝑥 ∗ 𝑤) (𝑖, 𝑗) = 𝛼
𝑘−1

∑
𝑚=0

𝑘−1

∑
𝑛=0

𝑤(𝑚, 𝑛) 𝑥(𝑖 − 𝑚, 𝑗 − 𝑛)

=
𝑘−1

∑
𝑚=0

𝑘−1

∑
𝑛=0

𝑤(𝑚, 𝑛) 𝛼𝑥(𝑖 − 𝑚, 𝑗 − 𝑛)

=
𝑘−1

∑
𝑚=0

𝑘−1

∑
𝑛=0

𝑤(𝑚, 𝑛) (𝛼𝑥)(𝑖 − 𝑚, 𝑗 − 𝑛)

= ((𝛼𝑥) ∗ 𝑤) (𝑖, 𝑗)

Therefore, 𝛼(𝑥 ∗ 𝑤) = (𝛼𝑥) ∗ 𝑤 .

Theorem 6.2 (Convolution Translation Equivariance). Let 𝑥 ∶ {0, ..., 𝑑−1}×{0, ..., 𝑑−1} →
ℝ be an input signal and 𝑤 ∶ {0, ..., 𝑘 − 1} × {0, ..., 𝑘 − 1} → ℝ be a convolution kernel. Let

𝑚, 𝑛 ∈ {0, ..., 𝑑 − 1} and let 𝜑𝑚,𝑛 be a translation. Then,

(𝜑𝑚,𝑛 ⋅ 𝑥) ∗ 𝑤 = 𝜑𝑚,𝑛 ⋅ (𝑥 ∗ 𝑤).

Proof. Let 𝑖, 𝑗 ∈ {0, ..., 𝑑 − 1}. Note that,

(𝜑𝑚,𝑛 ⋅ (𝑥 ∗ 𝑤))(𝑖, 𝑗) = (𝑥 ∗ 𝑤)(𝑖 − 𝑚 mod 𝑑, 𝑗 − 𝑛 mod 𝑑)

=
𝑘−1

∑
𝑢=0

𝑘−1

∑
𝑣=0

𝑤(𝑢, 𝑣)𝑥((𝑖 − 𝑚 mod 𝑑) − 𝑢, (𝑗 − 𝑛 mod 𝑑) − 𝑣)

=
𝑘−1

∑
𝑢=0

𝑘−1

∑
𝑣=0

𝑤(𝑢, 𝑣)𝑥(𝑖 − 𝑚 − 𝑢 mod 𝑑, 𝑗 − 𝑛 − 𝑣 mod 𝑑)

=
𝑘−1

∑
𝑢=0

𝑘−1

∑
𝑣=0

𝑤(𝑢, 𝑣)(𝜑𝑚,𝑛 ⋅ 𝑥)(𝑖 − 𝑢, 𝑗 − 𝑣)

= ((𝜑𝑚,𝑛 ⋅ 𝑥) ∗ 𝑤)(𝑖, 𝑗),

where the third equality holds because of circular padding. Therefore, (𝜑𝑚,𝑛 ⋅ 𝑥) ∗ 𝑤 =
𝜑𝑚,𝑛 ⋅ (𝑥 ∗ 𝑤).

Lastly, we prove that all linear translation equivariant functions can be written as
convolutions.

Theorem 6.3. Let  = {𝑥 ∶ {0, ..., 𝑑 − 1} × {0, ..., 𝑑 − 1} → ℝ}. Let 𝑓 ∶  →  be linear

and translation equivariant. Then, there exists 𝑤 ∶ {0, ..., 𝑘 − 1} × {0, ..., 𝑘 − 1} → ℝ such

that

𝑓 (𝑥) = 𝑥 ∗ 𝑤

for all 𝑥 ∈  .

Proof. Let 𝑥 ∈  . Let 𝑏 ∈  such that 𝑏(0, 0) = 1 and 𝑏(𝑖, 𝑗) = 0 for all (𝑖, 𝑗) ≠ (0, 0). Note
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that

𝑥 =
𝑑−1

∑
𝑢=0

𝑑−1

∑
𝑣=0

𝑥(𝑢, 𝑣)(𝜑𝑢,𝑣 ⋅ 𝑏).

Because of linearity, we have

𝑓 (𝑥) =
𝑑−1

∑
𝑢=0

𝑑−1

∑
𝑣=0

𝑥(𝑢, 𝑣)𝑓 (𝜑𝑢,𝑣 ⋅ 𝑏).

And because of translation equivariance, we have

𝑓 (𝑥) =
𝑑−1

∑
𝑢=0

𝑑−1

∑
𝑣=0

𝑥(𝑢, 𝑣)𝑓 (𝜑𝑢,𝑣 ⋅ 𝑏)

=
𝑑−1

∑
𝑢=0

𝑑−1

∑
𝑣=0

𝑥(𝑢, 𝑣)𝜑𝑢,𝑣 ⋅ 𝑓 (𝑏)

Let 𝑤 = 𝑓 (𝑏). Note that

𝑓 (𝑥)(𝑖, 𝑗) =
𝑑−1

∑
𝑢=0

𝑑−1

∑
𝑣=0

𝑥(𝑢, 𝑣)(𝜑𝑢,𝑣 ⋅ 𝑤)(𝑖, 𝑗)

=
𝑑−1

∑
𝑢=0

𝑑−1

∑
𝑣=0

𝑥(𝑢, 𝑣)𝑤(𝑖 − 𝑢 mod 𝑑, 𝑗 − 𝑣 mod 𝑑)

Now define 𝑚 = 𝑖 − 𝑢 mod 𝑑 and 𝑛 = 𝑗 − 𝑣 mod 𝑑 . Applying a change of variable yields

𝑓 (𝑥)(𝑖, 𝑗) =
𝑑−1

∑
𝑚=0

𝑑−1

∑
𝑛=0

𝑥(𝑖 − 𝑚 mod 𝑑, 𝑗 − 𝑛 mod 𝑑)𝑤(𝑚, 𝑛)

= (𝑥 ∗ 𝑤)(𝑖, 𝑗).

Where the last equality holds because of circular padding. Therefore, 𝑓 (𝑥) = 𝑥 ∗ 𝑤 .

Now, we will see how Convolutional neural networks explore the idea of translation
equivariance.

6.4 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) were first introduced by LeCun, Boser, et al.,

1989. Their defining component is the convolutional layer, which applies a convolution
with a learned kernel to extract local, translation-equivariant features from grid-structured
data.

In general terms, a standard CNN layer is the composition of three operations:



6.4 | CONVOLUTIONAL NEURAL NETWORKS

35

1. Convolution, which, under appropriate boundary conditions, ensures translation
equivariance;

2. A pointwise non-linearity, such as ReLU;

3. A coarsening operator, typically a pooling layer (e.g. max or average pooling).

Although convolution itself is exactly translation-equivariant, some practical design
choices in CNNs break this symmetry. As discussed in the previous section, zero-padding

introduces boundary artifacts that violate equivariance at the image edges. Likewise, max

pooling breaks perfect equivariance, yielding only approximate translation equivariance.

After a sequence of convolutional and pooling layers, it is common to apply a multi-
layer perceptron (MLP) to map the learned feature maps to task-specific outputs. Im-
portantly, this does not yield translation invariance. To obtain invariance, one must first
apply a spatial aggregation operator, such as global average pooling or summation, before
passing the result through an MLP. This idea follows directly from the invariant layer
of the GDL blueprint.

Finally, translations are not the only symmetries present in visual data. For instance,
rotating an image of a dog still yields an image recognizable as the same dog. This mo-
tivates extending convolution to be equivariant to larger groups, such as rotations and
reflections. This line of work was initiated by Cohen and Welling with Group-Equivariant
CNNs (G-CNNs) T. Cohen and Welling, 2016. Further developments include steerable
CNNs (Weiler and Cesa, 2019) and spherical CNNs (T. S. Cohen et al., 2018). A detailed
discussion of these architectures is beyond the scope of this chapter.
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Chapter 7

GDL in Action

This chapter presents a series of controlled experiments designed to illustrate, in
practice, the concepts developed throughout this work. While previous chapters focused
on formalizing the Geometric Deep Learning perspective—its motivation, theoretical
foundations, and architectural principles—the results presented here demonstrate how
these ideas translate into concrete implementations. Rather than aiming for state-of-the-art
performance or extensive hyperparameter tuning, the primary objective is to compare
reasonable baselines: a universal approximator model and architectures informed by
GDL principles. Through these comparisons, we investigate how geometric inductive
biases influence model behavior and performance. Additionally, this chapter serves as an
opportunity to transition from high-level conceptual discussion to practical implementation
details, highlighting considerations that arise when turning theory into code.

The experiments are organized progressively. We begin with sets in a point cloud
classification setting, followed by graphs applied to molecular property prediction, and
conclude with grids in an image classification task.

All code used to run the experiments is publicly available at this url.

7.1 Sets
We begin by examining the Geometric Deep Learning setting in the context of sets,

focusing on a point cloud classification task. The corresponding subsection is structured in
two parts. The first presents the methodological framework, including architectural choices,
data preprocessing, and relevant hyperparameter configurations. The second part provides
the experimental results, followed by ablation studies and a discussion of the outcomes.

7.1.1 Method
We begin by describing the dataset used for point cloud classification. ModelNet10

(Wu et al., 2015) is a widely used benchmark dataset for 3D object recognition. It contains
4,899 CAD models across 10 object categories, including chairs, sofas, tables, and bathtubs.
Exact classes and object count are provided in Table 7.1. The dataset provides consistent

https://github.com/gabjp/GDL-SGG
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train–test splits and serves as a standard evaluation setting for neural networks operating
on unordered 3D point clouds. ModelNet10 is frequently used to test architectures that in-
corporate permutation invariance or geometric inductive biases, making it a suitable choice
for evaluating Set-based learning methods in the context of Geometric Deep Learning.
From each CAD model, we sample 1,024 points, which constitute the input.

Class Train Validation Total
bathtub 106 50 156
bed 515 100 615
chair 889 100 989
desk 200 86 286
dresser 200 86 286
monitor 465 100 565
nightstand 200 86 286
sofa 680 100 780
table 392 100 492
toilet 344 100 444
Total 3991 908 4899

Table 7.1: Number of samples per class in the ModelNet10 dataset. Source: Dale, 2024

For the permutation-invariant model, we use DeepSets (Zaheer et al., 2017). The
first MLP, which learns equivariant representations, has three layers. The input size is 3
(corresponding to the 3D coordinates), and the remaining layers use a dimensionality of
256. The resulting 256-dimensional representation for each point is aggregated using an
average operator and then fed to a second MLP with two layers. This second MLP has an
input and hidden size of 256, and its final layer outputs dimension 10. ReLU activations
are used throughout, except in the final layer of the second MLP, which uses a softmax
for classification.

We compare DeepSets against a three-layer MLP baseline. We flatten the points to form
the input, resulting in a feature dimension of 3,072. The model uses a hidden dimension of
4,096 and an output dimension of 10. As before, ReLU activations are used, with softmax
applied at the final layer.

We apply batch normalization (Ioffe and Szegedy, 2015) between the layers of all
MLPs to improve convergence.

For training, we use a batch size of 16, a learning rate of 0.001 for 100 epochs, the
Adam optimizer (Kingma and Ba, 2015), and a logarithmic learning rate scheduler, which
multiplies the learning rate by 0.95 after each epoch. Minimal hyperparameter tuning
was performed, as the goal of these experiments is to illustrate the effects of invariance
and equivariance rather than to achieve optimal performance. As fot the loss, we use
Cross Entropy.

We note that the DeepSet model has 202,506 trainable parameters, while the MLP
has 29,425,674 parameters. We attempted to train an MLP with fewer parameters, but
results were very poor (close to random guessing). Therefore, we chose to perform the
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comparison using the larger MLP. This further illustrates how encoding appropriate
geometric inductive biases can improve parameter efficiency.

7.1.2 Results and Ablation
We begin by comparing the training and validation performance of each model. Fig-

ure 7.1 shows the training and validation metrics for both approaches.
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Figure 7.1: Training and validation loss and accuracy for DeepSets and the MLP on ModelNet10.

DeepSets achieve substantially higher performance while using far fewer parameters.

We observe that DeepSets significantly outperform the MLP. In terms of validation
accuracy, the MLP reaches a maximum value of 44.6% and converges to 43.61%, while
DeepSets reach a maximum value of 90.64% and finish at 89.76%, despite using only 0.69%
of the parameters. This highlights how geometric inductive biases can simultaneously
improve performance and parameter efficiency (through weight sharing).

To further investigate the role of permutation invariance in this task, we select four
examples from the validation set and randomly permute the point order before feeding
them to the networks. We repeat this process 500 times and measure how the predictions
change. Figure 7.2 presents the results.

From these results, we observe that DeepSets predictions remain consistent under
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Figure 7.2: Average class predictions across random point permutations for the MLP and DeepSets.

Permutations significantly affect the MLP’s predictions but not those of DeepSets, as expected.

input permutations, as expected from a permutation-invariant architecture. In contrast,
the MLP is noticeably affected by point reordering, demonstrating its sensitivity to input
arrangement.

7.2 Graphs
Next, we explore GDL in the context of Graphs, using a molecule classification task. This

section is, as the one before, structured in two parts. The first presents the methodological
framework and the second part provides the experimental results, followed by ablation
studies and a discussion of the outcomes.

7.2.1 Method
For the molecular property prediction task, we use the MUTAG dataset (Debnath

et al., 1991). MUTAG is a widely used benchmark in graph learning and cheminformatics,
containing 188 chemical compounds. Each molecule is represented as a graph, where nodes
correspond to atoms and edges represent chemical bonds. Node features encode atom types,
while edge attributes indicate different bond categories—although in our experiments we
only use node features. The task is a binary classification problem: predicting whether a
compound is mutagenic on a specific strain of Salmonella typhimurium.

Table 7.2 reports the train–test split and class distribution used in our experiments.
As there is no official split, we use random ones.

For the GNN model, we use a Graph Isomorphism Network (GIN) (Xu et al., 2018).
A GIN is a neural architecture designed to match the discriminative power of the We-
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Category Train Validation Total
Mutagenic 104 21 125
Non-mutagenic 46 17 63
Total Samples 150 38 188

Table 7.2: Train–test split and class distribution for the MUTAG dataset.

isfeiler–Lehman (WL) graph isomorphism test, a classical algorithm used to determine
whether two graphs are structurally identical. The update rule of a layer is defined as
follows:

𝐡𝑣 = MLP((1 + 𝜖) 𝐡𝑣 + ∑
𝑢∈ (𝑣)

𝐡𝑢),

where 𝐡𝑣 denotes the representation of node 𝑣 and 𝜖 can be either learned or fixed.

In our experiments, we use three GIN layers. In all of them, 𝜖 is set to 0 and we use
2-layer MLPs. The first MLP has an input dimension of 7 (corresponding to the one-hot
encoding of atom types), and all remaining dimensions are set to 64. The final node
representations are aggregated via summation and fed into a single-layer MLP with output
size 2, followed by a softmax function.

For the MLP baseline, we construct the adjacency and feature matrices for each
molecule. These matrices are padded to match the maximum number of atoms in the
dataset (28). We then flatten and concatenate both matrices and feed the result into a
3-layer MLP. This model has an input size of 980, a hidden dimension of 64, and an output
dimension of 2. The loss function used is again cross entropy. Again, batch normalization
(Ioffe and Szegedy, 2015) is used in all MLPs.

The MLP baseline contains a total of 67,330 trainable parameters, whereas the GNN
model contains 21,826 parameters.

For training, we use a batch size of 32. We follow the same setup as before and use
a learning rate of 0.001 for 100 epochs, the Adam optimizer (Kingma and Ba, 2015), and
a logarithmic learning rate scheduler, which multiplies the learning rate by 0.95 after
each epoch.

7.2.2 Results and Ablation
Again, we begin by comparing the training and validation performance of each model.

Figure 7.3 shows the training and testing metrics for both approaches.

Unlike the previous experiment, the performance of both methods is very close. On
the validation set, both models reach the same maximum accuracy of 89.47%, although
they converge to slightly different final values. The MLP finishes at 86.84%, whereas the
GNN converges to 89.47%.

To better illustrate the effect of permutation invariance, we perform an analogous
ablation study: we select four validation examples and randomly permute the order of
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Figure 7.3: Training and validation loss and accuracy for the GNN and the MLP on MUTAG. Al-

though the MLP shows slight overfitting, the overall performance remains very similar.

their nodes before feeding them to both networks. This process is repeated 500 times, and
we examine the average predictions. Figure 7.4 summarizes the results.

Overall, although both models achieve comparable accuracy, the ablation highlights
a key difference: the GNN remains robust to input permutations, as guaranteed by its
permutation-invariant architecture, whereas the MLP is noticeably affected by node re-
ordering, demonstrating its sensitivity to the input structure.

7.3 Grids

Finally, we explore GDL in the context of Grids, performing an image classification
task. This section is, structured in the same way as the previous ones. The first presents
the methodological framework and the second part provides the experimental results,
followed by ablation studies and a discussion of the outcomes.
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Figure 7.4: Average class predictions across random node permutations for the MLP and GNN. As

expected, permutations significantly affect the MLP’s predictions but not those of the GNN.

7.3.1 Method
For the image classification task, we use the MNIST dataset (LeCun, Bottou, et al.,

2002). The MNIST dataset is one of the most widely used benchmarks in Machine Learning
and image-processing for handwritten digit classification. It consists of 28 × 28 pixel
grayscale images of the digits 0 through 9, each labelled with the corresponding digit.
Because the dataset is balanced across the ten classes and relatively small, it serves as a
convenient starting point for benchmarking classification architectures. Table 7.3 presents
class counts over train and validation.

Class Train Count Validation Count

0 5923 980
1 6742 1135
2 5958 1032
3 6131 1010
4 5842 982
5 5421 892
6 5918 958
7 6265 1028
8 5851 974
9 5949 1009

Total 60000 10000

Table 7.3: Number of samples per class in the MNIST dataset across the training and testing splits.

For the CNN model, we use four convolutional layers with ReLU activations and batch
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normalization. The convolutional layers do not include bias terms, and padding is set to
circular mode to improve equivariance. The first two layers use 32 channels, and the last
two use 64 channels. Between the second and third layers, we apply a BlurPool coarsening
operator, i.e., we convolve with a blur filter and downscale the feature maps to half their
original size (from 28×28 to 14×14). Although coarsening operations usually break perfect
equivariance, this strategy is known to help mitigate the issue (Zhang, 2019). After the
final convolutional layer, we average each channel over the spatial dimensions to obtain
(approximately) invariant representations. The resulting 64-dimensional vector is fed into
a linear layer with input dimension 64 and output dimension 10, which is then followed
by a softmax to produce class probabilities.

For the MLP baseline, we flatten the images into 784-dimensional vectors. Each vector
is then fed into a 3-layer MLP with hidden dimension 64, ReLU activations, and a final
softmax. The MLP has 55,306 parameters, while the CNN has 16,794 parameters.

For training, we use a batch size of 32. We set the learning rate to 0.001 for 20 epochs,
use the Adam optimizer (Kingma and Ba, 2015), and apply a logarithmic learning rate
scheduler that multiplies the learning rate by 0.95 after each epoch.

7.3.2 Results and Ablation
Figure 7.5 shows the training and testing metrics for both approaches.

In terms of validation accuracy, the MLP achieves a maximum value of 98.21% and
converges to 97.98%, while the CNN reaches a maximum of 99.34% and converges to
98.91%. Although the difference is relatively small, the CNN outperforms the MLP while
using fewer parameters.

To better illustrate the effect of translation invariance, we perform an analogous
ablation study as before: we select four validation examples and randomly translate the
pixels before feeding them to both networks. This process is repeated 500 times, and we
examine the average predictions. Figure 7.6 summarizes the results.

Overall, although both models achieve comparable accuracy, the ablation highlights
a key distinction: the CNN remains far more robust to input translations (although not
perfectly invariant due to the coarsening step), whereas the MLP is noticeably affected by
such transformations, demonstrating its sensitivity to the input structure.

7.4 Discussion
Across the three experimental domains—sets, graphs, and grids—the results consistently

demonstrate the value of incorporating geometric inductive biases into model design. In
each setting, symmetry-aware architectures achieved competitive or superior performance
in the validation set, while requiring significantly fewer parameters than their uncon-
strained MLP baselines, therefore showcasing better generalization capability. Beyond
accuracy, the ablation studies revealed an even clearer distinction: models respecting the
symmetry of the input domain behaved predictably under permissible transformations,
whereas the baselines were highly sensitive to them.
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Figure 7.5: Training and validation loss and accuracy for the CNN and the MLP on MNIST. The CNN

slightly outperforms the MLP.

DeepSets showed strong advantages in the set-based experiment, both in accuracy and
invariance to point permutations. In the graph task, the performance gap between GIN
and the MLP was smaller, yet the GIN remained stable under node reordering, confirming
its alignment with the relational structure of the data. Finally, in the grid experiment, the
CNN demonstrated improved robustness to translations relative to the MLP, reflecting the
approximate equivariance built into convolutional architectures.

Overall, these results empirically validate the theoretical framework developed in the
previous chapters, demonstrating that the principles of symmetry, equivariance, and in-
variant representation are not only mathematically grounded but also practically beneficial
across diverse learning settings.
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Figure 7.6: Average class predictions across random translations for the MLP and CNN. As expected,

translations significantly affect the MLP’s predictions but not those of the CNN.
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Chapter 8

Conclusion

This work explored Geometric Deep Learning as a principled framework for under-
standing and constructing neural network architectures through symmetry. By focusing
on three fundamental geometric domains—Sets, Graphs, and Grids—we showed how in-
variance and equivariance naturally guide architecture design and help address challenges
such as sample inefficiency and the curse of dimensionality. Rather than presenting GDL in
its full mathematical generality, the thesis prioritized intuition, foundational concepts, and
simplified formal tools, making the topic accessible to readers at the undergraduate level.

Throughout the chapters, we demonstrated how canonical models such as DeepSets,
Graph Neural Networks, and Convolutional Neural Networks emerge directly from geo-
metric priors embedded in the data domain. Lastly, the experimental results reinforced the
theoretical foundations developed in earlier sections. While this work does not attempt
to exhaustively cover the rapidly growing field of GDL, it provides a structured entry
point and a conceptual blueprint for further study.
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